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Abstract—The MIMO radar technique enables high angular
resolution by virtually synthesizing a larger number of receiving
antennas [1]. This paper leverages this technique to generate
reliable point cloud data of an outdoor space, by applying a
series of radar processing techniques and a point cloud denoising
function. This work provides a comprehensive explanation of
our methodology, from calibration and measurements to data
processing and plotting. Our strategy is validated through real-
world measurements conducted using the cascaded TI AWR2243
radar, highlighting the potential of mmWave MIMO radars in
static 3D mapping scenarios and offering insight into practical
implementation challenges.

Index Terms—FMCW, measurements,
MIMO, point cloud generation, radar.
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I. INTRODUCTION

With recent advances on the integration of FMCW mmWave
radar transceivers, and the improvement of their RF features
[2], this technology has become more accessible and therefore
more employed in different areas such as Iot, healthcare, en-
vironmental and industrial applications and driving assistance
systems [3], [4], [S], mainly due to the advantages mmWave
frequencies offer in low visibility scenarios, harsh weather
conditions, or simply accumulations of mud, dust, or snow
[6]. Consequently, it is necessary to provide techniques that
keep up with these new technologies.

Several methodologies have been presented in recent years
that involve the use of artificial intelligence, such as neural
networks [7], [8], [9]. This work presents a simpler and faster
strategy for obtaining point cloud data, based on radar signal
processing techniques. The focus of this paper is on providing
a step-by-step guideline for our measurement procedures and
data analysis.

II. SYSTEM DESCRIPTION

Our system (see Figure 1) is divided into five parts: the sen-
sor, the positioner, the stand, the computer, and the scenario.
The next subsections explain in detail each of these parts.

A. mmWave Radar

Our sensor is a mmWave evaluation radar designed by Texas
Instruments (TI), it features four cascaded AWR2243 radar
transceiver chips to achieve fine azimuthal resolution, its spec-
ifications are summarized in Table I. This radar allows for two
modes of operation, Multiple Input Multiple Output (MIMO)
and Beamforming; the entire of this paper is based on the

MIMO mode. This technique improves the angular resolution
by virtually increasing the number of receive elements. Extra
transmit elements are added in strategic places, so that the
phase difference from the received signal keeps its arithmetic
progression along the physical receive antennas; in this way,
the total number of virtual channels is the number of receive
elements multiplied by the number of transmit elements [10].
Each element is a four-patch series-fed antenna array.

TABLE I
4-cHIP AWR2243 RADAR SPECIFICATIONS
[ Parameters | Value [ Unit ]

Frequencies 77 - 81 GHz
Resolution 1.4 Azimuth Degrees

FOV +-70 Azimuth Degrees
Waveform FMCW -

Modes MIMO / Beamforming -

B. Robot arm

The positioner is the robot arm UR3e designed by Universal
Robots, it features six degrees of freedom and a maximum
payload of three kilograms, it comes with a control box and
a control panel.

C. Stand and computer

The stand is a caster cart with a bolted aluminum post on
the front side, covered with high-frequency absorber foam.

The computer does not appear on the figure, but it is a
Lenovo laptop that connects to the radar via an Ethernet cable,
it can be seen in Figure 3.

D. Scenario

The scenario is the back patio of the Advanced Radar
Research Center (ARRC), Figure 2 shows it. This is an
excellent place to demonstrate our algorithm capabilities, as
it comprises different structures and materials. On the left
there is vegetation, trees, bushes, grass; in the center, a mostly
empty space closed by a brick wall, and on the right, some
wooden chairs and tables next to a wall with large windows
and covered with aluminum sheets.

From this scenario, we will receive different levels of power
from different angles. The idea is that our system should be
capable of recognizing and discriminating objects, despite the
wide variety of shapes and materials in the environment.



Fig. 1. System setup.

The second thing to consider is that there are no objects
moving in this scenario, at least at considerable speeds, that
is, because the objective of this paper is to exploit a single
chirp information for mapping purposes.

III. DATA COLLECTION

Since the 4-chip AWR?2243 radar was designed for automo-
tive applications rather than for mapping of spaces, the high
resolution of 1.4 degrees belongs only to the azimuthal di-
mension. The elevation resolution is 18 degrees, considerably
broad for mapping; for this reason, the radar is mounted on the
robot arm, so it can accurately tilt it up and down to reliably
obtain different layers of data from the space.

For our particular case, we decided to start with a depression
angle of 10 degrees and then program the arm to tilt the
radar up 5 degrees three times, giving us a total of four
measurements at the depression angles of 10, 5, 0, and -5
degrees.

The radar is triggered and controlled from the computer
thanks to mmWave Studio software and a customized MAT-
LAB app designed to ease the measurement process. Before
the measurements, it is important to know that resolution is
key for mapping, so the chirp was configured to attain a finer
range resolution. Equation (1) presents the range resolution
for FMCW radar, where c is the speed of light, and B is
the bandwdith of the waveform [11]. So, we maximized our
bandwdith and achieved 4.1 cm of range resolution.
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These data collected are stored on the MMWCAS-DSP-
EVM data capture board, located at the back of the
MMWCAS-RF-EVM, the board that holds the RF chips, an-
tennas, and other RF circuitry. These data are later transferred
to the computer and processed by our algorithm based on TI’s
MIMO processing example code.

Rres = (1)

|

Fig. 2. Scenario: Back patio at the ARRC.
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Fig. 3. Radar calibration in an anechoic chamber.

IV. POINT CLOUD GENERATION METHOD

A. Calibration

TI provides a calibration method in which the radar has to
be located around 6 meters from a target whose radar cross
section (RCS) is approximately 2 m? at 79 GHz.

Therefore, the radar was taken to our largest anechoic
chamber. The target and radar were aligned in azimuth and
elevation using an industrial self-leveling alignment laser.
Then, a measurement was performed and the data obtained
were processed with the TI calibration code. This calibration
aims to correct for errors in frequency, amplitude, and phase,
by providing a set of matrices that can be later applied to our
posterior measurements.
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Fig. 4. Data processing flow diagram.

B. MIMO processing

This processing consists of 10 main steps before the point
cloud generation, refer to Figure 4. The first step converts the
retrieved binary files to IQ complex data, this conversion is
very dependent on how the measurement was configured, i.e.,
the number of chirps sent, the number of samples per chirp,
the number of frames, and ultimately the ADC resolution or
number of bits of the ADC. The output is then a 4D matrix
where the dimensions are, samples per chirp, number of chirps,
number of receive elements, and number of transmit elements.

Subsequently, these 1Q data were calibrated. In our case,
we have only corrected for the phases and amplitudes of our
signals. The third step is to organize the data according to the
position of the achieved virtual channels. With the AWR2243
TI cascaded radar, 86 non-overlapping virtual channels can
be obtained, so the IQ signals have to be correctly organized
through these channels. The last step of the data retrieval sec-
tion is the DC offset compensation; this is done by subtracting
from the signals of each virtual channel its mean value.

The next section comprises the heat map or energy map
formation steps. First, range windowing is applied to the
samples per chirp dimension (usually also called fast-time
dimension); the window type applied in our case is Hanning.
Windowing is important because it helps to reduce spectral
leakage (sidelobes) by decreasing the discontinuities at the
edges of our signals [12]. Later in this paper, we will see the
effect of this step on the quality of the results. Afterwards, the
first FFT (range FFT) is applied along the fast-time dimension,
this step focuses the energy of the signals in the range at
which they are coming from. This process is also called match
filtering. Then, the second FFT would be the Doppler FFT
across the chirps (slow-time dimension); a following fftshift
should be applied so the 0 Doppler frequency stays in the
center of the data. The last FFT should be applied along the
virtual channels, followed by a fftshift. The angle FFT focuses
the received energy in the directions that correspond to the
angles of the incoming signals.

The following section is the detection processing, which is
based on a cell averaging constant false alarm rate (CA-CFAR)
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Fig. 5. Point cloud generation diagram.

technique. This is a one-dimensional CFAR applied along the
angles, based on the method presented by M. Richards [13].

The subsequent section consists of formatting the data so
that it can be plotted and understood correctly by the user.
We decided to transform the data from polar to cartesian
coordinates, then the energy was normalized, so it can be
easily compared with other measurements, flipped or mirrored
so it matches our system of coordinates, then the data are
converted to a dB scale, and finally plotted.

C. Point cloud generation

Figure 5 presents a flow diagram of the steps performed
to obtain a point cloud map of the scene. First, the data are
converted back to polar coordinates (the polar coordinates can
be taken if they were saved during processing). Then, a “for”
loop is used to look for the range of the maximum return for
each angle; if the return is above the threshold, the range and
angle information are saved in a new x-by-2 matrix. Once all
the angles have been scanned, the remaining data are converted
to Cartesian coordinates and corrected for the elevation angles
corresponding to the tilt angles of the radar for each set of
measurements. Then, the height of the radar over the floor
should be considered, so an additional correction is applied
to account for this offset. Subsequently, since the elevation
resolution is considerably coarse, some of the measurement
sets, for the lower angles, output points that have negative
height, these are clearly errors and should be filtered out; so
this is the task of the space filtering block.

So far, all the processing has been performed in MATLAB,
mainly because of the expertise and familiarity of the team
with this software; however, another important reason is the
Add-Ons option that allows to install toolboxes. There is a
toolbox called Computer Vision that provides interesting point
cloud processing functions such as the “pcdenoise” function,
that removes outliers from the point cloud dataset. Although
this toolbox was created for LiDAR or camera applications,
it also works well for radar too. Finally, for plotting, the
MATLAB “scatter3” function is employed.
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Fig. 6. Data processing sequence. (a) Heat map before range windowing, CFAR and calibration. (b) Heat map after range windowing, but before CFAR and
calibration. (c) Heat map after windowing and CFAR, but before calibration. (d) Heat map after range windowing, CFAR and calibration have been applied.

V. ANALYSIS AND RESULTS

Figure 6 illustrates the importance of techniques highlighted
in blue light in Figure 4. It is possible to notice the importance
of range windowing by looking at the difference between
subplot (a) and (b), then the importance of CFAR to get rid of
the sidelobes contamination by looking at the improvement in
subplot (c), and finally the benefits of calibration are shown in
subplot (d), where it is possible to see how the energy spots
are more focused and defined. It should be mentioned that the
FOV is restricted after the CFAR along angles. The number of
angle bins lost on each side is equal to the number of CFAR
reference cells, is for this reason that zero padding should be
applied during the angle FFT, so we keep as much of our data
after CFAR. For this case, we zero padded from 86 elements
to 512 elements in the angle dimension.

After processing, in the plot, it is possible to visually
recognize several features of our scenario. These features are
framed in red in Figure 7. As can be seen, a rectangular-
like shape has been formed, it has the same dimensions as
our patio, and different elements can be recognized, e.g. the
vegetation line, the brick wall at the back, or the downspouts
that are highly reflective since they create corner reflectors
with the wall. Looking at Figure 2 again, we could see that
most of our elements have been captured.

Now, the point cloud generation algorithm is employed
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Fig. 7. Visual feature recognition for final heat map.

over the four sets of heat maps. Figures 8 and 9 show an
isometric view and a tilted top view of our point cloud output,
respectively. From both pictures it is possible to observe four
groups of points, the ones that belong to the downspouts on
the right side of the plot, the ones that belong to the brick
wall at the back of the patio, the ones on the left side that
belong to the bushes and trees, and a few points close to
the center that could most likely belong to a table or chair.
In Figure 9, it is also observable that the different layers of
data stack together, and it is also noticeable that there are two



small groups of points outside the patio, the ones on the left
beyond the trees, we believe that these correspond to a specific
elevated area on the ground, since the backyard goes uphill.
Regarding the points beyond the brick wall, we have to say
that unfortunately these are errors and most probably exist due
to multipath reflections.

In terms of the sparsity of this point cloud, we should
mention that, in comparison with LiDAR or camera, radar
point clouds are very sparse due to the poor resolution [7];
nonetheless, despite all the techniques applied, that reduce the
number of points, to improve the detection of elements in our
scenario, e.g. CFAR and denoisoing, the surface limits of the
surrounding were decently defined in an open large space.

It is important and necessary to mention that, for the sake
of providing a replicable methodology, the aforementioned
threshold for the point cloud generation was determined as
-15 dB below the maximum return; and the CFAR parameters
as reference and guard cells and K factor were calculated ad
hoc.

Finally, in a manner of discussion, it was seen that if CFAR
is applied along range, more characteristics of the scene are
retrieved; however, the sidelobe contamination persists; in this
case, if algorithms such as Nulling or CLEAN are performed
to remove the strong reflective points (downspouts), more
information could have been retrieved, and the point cloud
could have been generated by parts; however, these procedures
extend beyond the scope but could be analyzed in a future

paper.
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Fig. 8. Point cloud - Isometric view.

VI. CONCLUSION

It is viable to obtain reliable point cloud data from a
diverse scenario with a mmWave MIMO radar. The algorithm
presented is fast, since only processes a single chirp, and does
not depend on artificial intelligent techniques. This algorithm
is also easy to implement, being the most complicated opera-
tions the FFTs and the denoising function, which is based on
statistical techniques [14].
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Fig. 9. Point cloud - top tilted view.
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