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ber, IEEE, José D. Dı́az, Student Member, IEEE, Caleb Fulton,
Senior, IEEE, and Robert D. Palmer, Fellow, IEEE

Abstract—With the growing interest in polarization diversity in
communications and radar systems, the use of Ludwig’s second
and third definitions have become controversial among scientists
and antenna engineers. Therefore, this manuscript is an attempt
to clarify some of the ambiguity and confusion caused by these
definitions. A detailed comparison of Ludwig’s 2nd and 3rd
definitions of cross-polarization, as applied to linearly polarized
antennas, was performed. The results show that, in the diagonal
plane, Ludwig’s 2nd definition leads to a lower cross-polarization
level than the 3rd definition for x- or y-polarized current sources.
For a Huygens source, by Ludwig’s 3rd definition, the radiation
pattern has a lower cross-polarization level than that obtained
by Ludwig’s 2nd definition. For some applications, the antenna is
usually placed in the y-z plane. Therefore, new polarization bases
are proposed according to which source is used as a reference,
and also on how this source is oriented in the y-z plane.

To complement the theoretical framework demonstrated in this
contribution, and to provide readers with a better and simpler
understanding of the cross-polarization definition, the analysis of
several practical antennas for diverse applications was presented.
Numerical and measured radiation patterns of wire and printed
dipoles, rectangular patch, pyramidal horn, and open-ended
rectangular waveguide antennas were investigated according to
the polarization formulations presented in this paper. In addition,
a dual-polarized element and dual-polarized active phased array
at broadside were utilized to generalize the application.

Index Terms—Radar systems, polarization diversity, cross-
polarization, Ludwig’s definitions, source current polarization,
far-field polarization, phased array.

I. INTRODUCTION

In applications such as satellite communications, radar
systems, and remote sensing, it is very important to make more
efficient use of available bandwidth to effectively increase
channel capacity. Instead of a spatial diversity approach, the
use of a polarization diversity provides two communication
channels for each frequency band. For this reason, interest
has been increased in the polarization purity of antenna pat-
terns and cross-polarization reduction [1]. In the polarization
diversity approach, two independent signals using the same
frequency band can be transmitted over a single link. In such
systems, isolation between channels depends on suppression
of the cross-polarization. High cross-polarization levels will
degrade the quality of the orthogonal signals by mutual
interference [1-4]. Achieving pure polarization with the lowest
possible levels of cross-polarization is very important for these
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applications. However, designing a system with extremely low
cross-polarization levels in the coverage region is not easy,
although the orthogonally-polarized channels are theoretically
assumed to be completely isolated.

For polarimetric phased array weather radar, steering the
co-polar beam away from broadside direction or the principal
planes will dramatically change the cross polarization level
along the boresight direction, with the highest value in the
diagonal plane. For this reason, obtaining very low cross polar-
ization and high port isolation between the orthogonal antenna
ports (H- and V-polarizations) over the whole scanning range
is the major challenge for any polarimetric weather radars [5].

In 1973, the major paper concerning definitions of co- and
cross-polarization was published by Ludwig [6]. He discussed
and presented the definitions of co- and cross-polarization
as applied to linearly polarized antennas. All Ludwig’s def-
initions are essentially the same in the principal planes, but
they seriously disagree in off-broadside directions along non-
principal planes. In Knittel’s commentary on Ludwig’s paper
[7], the author mentioned that the Ludwig 3 definition cannot
be the standard definition of the cross-polarization, and it is
not optimal for electric and magnetic dipoles. According to
the Ludwig 3 definition, both dipoles would have significant
levels of cross polarization out of the principal planes with
highest value in the diagonal plane (ϕ = 45◦, θ = 45◦).
Also, a Huygens source would have no cross-polarization
under the Ludwig 3 definition. In [8], a θ-dependence, not
involved in the original Ludwig 3 definition, was introduced
to generalize the Ludwig’s third definition. Ambiguity and
confusion regarding the use of the most meaningful description
of cross polarization have been caused due to the controversy
surrounding these definitions, and not much work has been
done to identify and clarify them. In this paper, the controversy
is addressed by attempting to clarify Ludwig’s definitions
using source current polarization and its relation to the far field
polarization of different linearly-polarized reference sources
positioned in different orientations. In addition, as an extension
of Ludwig’s definitions, co- and cross-polarization definitions
are provided for reference sources positioned in the spherical
coordinate system with different configurations.

The coordinate system of an anechoic chamber has a dif-
ferent configuration than the standard coordinate system used
in theory and in weather radar applications. In these configu-
rations, an antenna is lying in the y-z or x-z plane. Therefore,
well-known definitions of co- and cross-polarization, which
were derived assuming the reference source lying in the x-y
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plane, need to be properly extended to provide much more
accurate analytical expressions to characterize co- and cross-
polarization unit vectors.

The newly developed definitions, as well as Ludwig’s def-
initions, are applied to linearly polarized different practical
antenna elements to clarify the cross-polarization definition,
and to discuss the proper definition for different applications.
The cross-polarization levels of a wire and printed dipole,
rectangular microstrip patch, pyramidal horn, and open-ended
rectangular wave guide have been used to illustrate Ludwig’s
definitions. In addition, dual-polarized 4x4 antenna array has
been used for the same purpose.

Although cross-polarization definitions are provided by
Ludwig, there are no detailed mathematical derivations. There-
fore, the antenna community is still confused when following
the formulas presented by Ludwig. Primarily for educational
purposes, another objective of this paper is to provide a
detailed formulation of Ludwig’s definitions of the co- and
cross-polarization using critical notes found in his paper [7].

The rest of this paper is organized as follows: Ludwig’s
definitions of co- and cross-polarization are reviewed in more
detail in Section II. Next, Section III presents a detailed
description of the relationship between the source current
polarization and co- and cross-polarization components of the
radiation pattern in the far field region. In Section IV, the
extended cross-polarization definitions of an antenna lying in
the y-z plane are presented taking into account the effect of
mechanical elevation tilt. In Section V, the HFSS simulated
and measured results of co- and cross-polarization components
of different antennas are conducted for the purpose of verifying
the definitions presented in the paper. Finally, Section VI
summarizes all derived work and concludes the paper.

II. CROSS-POLARIZATION DEFINITION

Polarization characteristics of the electromagnetic fields
radiated by an antenna are one of the main factors that must
be considered in the antenna design. In general, depending on
the type of application, the antenna is designed to operate in a
certain mode of polarization that typically varies from linear to
circular. However, purity of the desirable polarization within
the co-polar beam is required. This condition is normally
satisfied for antennas with a very high directivity in which
the cross-polarization level is sufficiently low within a narrow
angular sector around the broadside direction. However, for
non-directive radiating elements like those used in array an-
tennas, the cross-polarization level is significantly high over a
wide angular sector. The presence of cross-polarization in this
angular sector of the radiation pattern undesirably impacts the
antenna performance, because cross-polarized components are
radiated at the expense of desirable co-polarized components.
The energy trapped in the cross-polarization component is
considered a loss in the total input energy, which affects
antenna efficiency. Hence, efficient antennas are designed to
minimize cross-polarization levels.

For any practical antenna, discrepancies among the cross-
polarization levels using Ludwig’s definitions can be observed
in the region away from the broadside direction especially

in the non-principal planes. These discrepancies are serious in
the angular region about 5◦ to 80◦ from the antenna broadside
with the maximum value at approximately ϕ = 45◦ [9].

In the spherical coordinate system, the unit vectors θ̂ and ϕ̂
are commonly used to represent the theoretical and measured
fields radiated by an antenna. The electric field components at
any observation point in the far-field region of the antenna are
specified by the angles θ and ϕ. In the principal planes and
at broadside, both of these spherical unit vectors are aligned
to cartesian unit vectors. However, in off-broadside directions
along non-principal planes, the co- and cross-polarization
vectors depend on how the polarization basis is defined. Both
components will be coupled with each other when scanning
off-broadside and off-principle planes. The angular spatial
relationship between the field components in the off-broadside
angle and along non-principal planes is a matter of geometric
projection of the electric field components [5].

In electromagnetics and antenna theory, different coordinate
systems are used to describe the radiating sources and their
radiated waves. The radiating sources are usually described in
terms of a cartesian coordinate system. On the other hand, a
spherical coordinate system, with the same cartesian origin,
is used to describe the far-field waves radiated by these
sources. However, some ambiguities and confusion in the
interpretations and applications of appropriate co- and cross-
polarization definitions are created because both coordinate
systems uses the same origin. Consequently, one definition of
cross polarization, universally accepted, does not exist [5], [6].

Most antennas are typically designed to work in a certain
polarization mode. However in reality, these antennas, in addi-
tion to the designed polarization mode, have radiation leakage
in the perpendicular polarization direction. Hence, the antenna
simultaneously has two radiation patterns, co- and cross-
polarization. Therefore, the term cross-polarization arises be-
cause there is no antenna perfectly polarized in a single mode.
The IEEE standard definition of cross-polarization is “the
polarization orthogonal to a specified reference polarization”
[10]. Unfortunately, this definition does not define the direction
of the reference polarization, and then leads to ambiguity and
confusion in the use of the appropriate definition of cross-
polarization. For example, the right hand circular polarization
is the cross-polarization for the left hand circular polarization,
and the vertical polarization is the cross-polarization of an
antenna horizontally polarized, and vice-versa. For circular
polarization, the standard definition is sufficient and adequate,
but for linear or elliptical polarization, the direction of the
reference (co) polarization still needs to be defined. The
cross-polarization level of an antenna is defined as the peak
value of the cross-polarization radiation pattern relative to the
peak value of the co-polarization radiation pattern. The cross-
polarization level is usually calculated in the E-, H-, and D-
planes with the highest value in the D-plane.

Co- and cross-polarization components of the radiating
source under consideration are usually defined by comparing
them to a reference source [10]. The co-polarization compo-
nent of a given antenna is defined to be the field component
that is parallel to the reference source field, and the cross-
polarization component is the orthogonal component. These
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Fig. 1: Definitions of co-polarization and cross-polarization for
the three definitions of Ludwig [6].

components can be expressed by deriving unit vectors ûco
and ûcross of a reference source such that the dot product
of these unit vectors with the electric field components of
a given antenna in the far field defines the co- and cross-
polarization components, respectively. These components, at a
given observation angle specified by the spherical coordinate
angles (θ, ϕ), are given by

Eco = Ē · ûco (1)

Ecross = Ē · ûcross (2)

where Ē is the electric field vector of the given antenna, ûco
and ûcross are unit vectors defined not only based on which
source has been chosen as the reference, but also on how this
reference is oriented.

Ludwig, in [6], discusses and presents three alternative
definitions of the co- and cross-polarization. These definitions,
named the 1st, 2nd, and 3rd Ludwig’s definitions, are used
either implicitly or explicitly in the literature. The first defini-
tion is defined according to the reference field considered as a
plane wave. The second is defined by the radiated E-field from
an electric dipole. Ludwig’s third definition is defined by the
E-field radiated by a y-polarized Huygens source. According
to [6], the co- and cross-polarization of an antenna, linearly
polarized, can be defined in three ways:

Ludwig 1. Unit vectors of a rectangular coordinate system
coincide with co- and cross-polarization unit vector directions
[5], [6]. As shown in Fig.1, the electric field vector is projected
onto the x̂ and ŷ vectors lying in the aperture plane.

ûco = ŷ = sin θ sinϕ r̂ + cos θ sinϕ θ̂ + cosϕ ϕ̂ (3)

ûcross = x̂ = sin θ cosϕ r̂ + cos θ cosϕ θ̂ − sinϕ ϕ̂ (4)

In most of antenna applications, using this definition leads to
inaccuracies because the fields radiated by any antenna in the
far region are tangent to the surface of a sphere centralized at
the field source. The polarization of the radiated fields varies as
the observation angle moves away from broadside. Therefore,
Ludwig 1 is fundamentally not the appropriate definition for
these applications. However, the first definition is the proper
choice to describe source current polarizations [6].

Ludwig 2. Spherical unit vectors, tangential to a spherical
surface, are used to represent the unit vector directions of

co and cross polarizations. Co- and cross-polar field vectors,
corresponding to the θ and ϕ directions of a perfectly linearly
polarized antenna are shown in Fig. 1. For a y-polarized
infinitesimal dipole, the Ludwig 2-I definition is presented by

ûco =
sinϕ cos θ θ̂ + cosϕ ϕ̂√

1− sin2 ϕ sin2 θ
(5)

ûcross =
cosϕ θ̂ − sinϕ cos θ ϕ̂√

1− sin2 ϕ sin2 θ
(6)

If the same dipole polarized in the x-direction, the Ludwig
2-II definition is presented by

ûco =
cosϕ cos θ θ̂ − sinϕ ϕ̂√

1− cos2 ϕ sin2 θ
(7)

ûcross =
sinϕ θ̂ + cosϕ cos θ ϕ̂√

1− cos2 ϕ sin2 θ
(8)

Eqs. (5-8) show that the co- and cross-polarization com-
ponents of a perfect current source are not orthogonal to
others of the same source rotated 90◦, except in the principal
planes and at the broadside direction [6]. This is because the
coordinate system that defines the co- and cross-polarization
components of the radiated field cannot be rotated. The dot
product of the corresponding co- and cross-unit vectors in
these equations (neglecting unimportant sign changes) is not
zero in all directions, and it is as follows

ûL2−I · ûL2−II = cosϕ sinϕ sin2 θ√
cos2 θ + 0.25 sin4 θ sin2 2ϕ

(9)

Eq. 9 shows the nonorthogonality between two perfect
patterns rotated 90◦ with respect to each other. Because of
this property, there are two cases of Ludwig 2, named as
Ludwig 2-I and Ludwig 2-II definitions, based on the polar-
ization direction of the antenna. For dual-polarized antennas,
this definition will result co- and cross-polarization radiation
patterns that are not simple versions of the one another simply
rotated 90◦. However, for Ludwig first and third definitions,
interchanging the co- and cross-polarization field components
corresponds to rotating the reference source 90◦ about the z-
axis (neglecting sign changes).

Ludwig 3. The co- and cross-polarization definition of
Ludwig 3 corresponds to “what one measures when antenna
patterns are taken in the usual manner”. It is not easy to
formulate this definition in terms of simple coordinate system
unit vectors as explained in [6]. It is normally used with feed
systems and reflector antennas and is widely used in anechoic
chamber measurements. As shown in Fig. 1, the Ludwig 3 unit
vectors can be obtained by rotating the θ and ϕ unit vectors
about the radial direction by the angle ϕ as follows

ûco = sinϕ θ̂ + cosϕ ϕ̂ (10)

ûcross = cosϕ θ̂ − sinϕ ϕ̂ (11)

An ideal Huygens source, composed of orthogonal elec-
tric and magnetic currents placed along the y- and x-axis,
respectively, is used as a reference to derive the Ludwig 3
equations. Therefore, the Huygens source is considered an
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Fig. 2: Aperture antenna with a Huygens source polarized in
a) y-direction b) x-direction.

ideal electromagnetic source that generates a radiation pattern
with orthogonal electric fields in any beam direction and zero
cross-polarization everywhere. The co- and cross-polarization
components of the radiation pattern, using this definition,
can be transformed into each other by a global rotation.
Interchanging these equations in any direction in the far field
space corresponds to a 90◦ rotation of the Huygens source.

For a Huygens source, the aperture tangential electric and
magnetic fields are related by the uniform plane wave rela-
tionship at all points over the aperture as illustrated in Fig.
2. This condition is not easily satisfied for practical aperture
antennas. Therefore, the Huygens source should be considered
an approximation. However, it is approximately valid for cor-
rugated and dual-mode horn antennas with a large aperture, but
only over a small bandwidth. The high impedance side walls,
implemented with corrugations, reduce the cross-polarization
level because of the highly symmetric field distribution over
the horn aperture. Such a source is widely used as a feed
of the parabolic reflector, which theoretically has a radiation
pattern with no cross-polarization. On the other hand, antenna
with very small aperture compared to the wavelength like slot
antenna can be considered as a magnetic dipole.

Ideally, a symmetric field distribution over the antenna aper-
ture, with respect to the principal planes, contributes to zero
cross-polarization in the symmetry planes and the boresight
direction. However, the cross-polarization level dramatically
increases if moved out from the symmetry planes or away from
the boresight direction. For any linearly polarized antenna, the
cross-polarization pattern takes the form of four lobes, with
peaks located in the diagonal plane and extremely low values
along the principal planes, because of the phase inversions
between any two adjacent quadrants.

III. SOURCE CURRENT POLARIZATION

Unfortunately, Ludwig’s definitions of the co- and cross-
polarization of an antenna, despite their popularity and wide
range of applications, have not received much attention. Lud-
wig developed a set of classic equations that were included in
[6]. While these equations have been used as a reference in
many books and papers, it has not been clearly documented
how they were obtained, which references were used, and in
which orientations those references were positioned. There-
fore, in the antenna and radar communities there still doubt
when following the derivation in Ludwig’s paper. This section

discusses how to obtain and understand the co- and cross-
polarization vectors of the far field, and their relation to the
reference radiating source polarization (type and orientation).

This relationship can be simply obtained by using the
current distribution method for either wire or aperture antenna.
This method with help of the field equivalence principle is one
of the common techniques used to calculate co- and cross-
polarization performance of an antenna [11-12], in which the
aperture fields become the sources of the radiated fields at
far observation points. In this paper, the current distribution
method was used for calculating the θ and ϕ components of
the radiated field. The expressions of these components derived
in the Appendix are expressed in terms of the source current
polarization of an antenna.

As shown in Fig. 2 in [6], a given antenna is placed in the
x-y plane with the z-axis normal to the antenna. The polar
angle θ is measured from a fixed zenith direction (z-axis) and
azimuth angle ϕ is measured from the x-axis to the orthogonal
projection of the radial distance r on the x-y plane.

For simplicity, an infinitesimal electric or magnetic dipole
oriented along the x- or y-axis are considered

Js = x̂J0δ(x
′) or Js = ŷJ0δ(y

′) (12)

Ms = x̂M0δ(x
′) or Ms = ŷM0δ(y

′) (13)

The total electric field of an electric dipole polarized in the
x- or y-axis (12), with (37-40) in the Appendix, respectively,
is given by

Et ≃ ke(cos θ cosϕ θ̂ − sinϕ ϕ̂) (14)

Et ≃ ke(cos θ sinϕ θ̂ + cosϕ ϕ̂) (15)

where ke = − jηβJo e−jβr

4πr
Using (13) and (41-44) in the Appendix, for a magnetic

dipole polarized in x- or y-direction, the total electric field,
respectively, is presented by

Et ≃ −km(sinϕ θ̂ + cos θ cosϕ ϕ̂) (16)

Et ≃ km(cosϕ θ̂ − cos θ sinϕ ϕ̂) (17)

where km = − jβMo e−jβr

4πr
On other hand, a Huygens source polarized in the x- or

y-axis is given by the sum of two orthogonal sources (one
electric infinitesimal source J0, and one magnetic infinitesimal
source M0, where M0 = ηJ0). This source, as shown in Fig.
2, polarized in the x- and y-direction, respectively, can be
represented as follows

JMHuygens = x̂J0δ(x
′) + ŷM0δ(y

′) (18)

JMHuygens = ŷJ0δ(y
′)− x̂M0δ(x

′) (19)

Using a x- or y-polarized Huygens source given respectively
in (18) and (19), and (30-35) in the Appendix, the total electric
field can be given by

Et ≃ ke(1 + cos θ)(cosϕ θ̂ − sinϕ ϕ̂) (20)

Et ≃ ke(1 + cos θ)(sinϕ θ̂ + cosϕ ϕ̂) (21)

Now, Eqs. (1) and (2) are used such that the dot product
of the unit vectors ûco and ûcross of Ludwig’s definitions
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(5-8) and (10-11), and the unit vector of the total electric
field that is radiated by an infinitesimal electric dipole (14-
15) and an infinitesimal magnetic dipole (16-17) polarized
in the x- or y-axis, will define the contributions of these
currents to the cross-polarization in the far field patterns. These
contributions to the cross polarization are summarized in Table
I (ignoring unimportant sign changes). It can be seen that
the y-polarized electric and magnetic current patterns contain
no cross-polarization according to the Ludwig 2-I definition.
However, by using the Ludwig 2-II definition, the pattern of
the x-polarized electric and magnetic currents has zero cross-
polarization. It is apparent that the dominant cause of cross-
polarization is the x-polarized source current according to
Ludwig 2-I, and the y-polarized source current according to
Ludwig 2-II. The y-polarized source current by Ludwig 2-I
and x-polarized source current by Ludwig 2-II are the co-
polarization currents. If the third definition is used, the radia-
tion patterns of the electric and magnetic currents, oriented
along the x- and y-axis, would have no cross-polarization
in the principal planes, and significant cross-polarization in
nonprincipal planes and far away from broadside.

TABLE I: Electric and magnetic source current contributions
of an infinitesimal dipole to far-field patterns cross-polarization

Definition Direction Ie Im

ix
sinϕ cosϕ sin2 θ√

F

sinϕ cosϕ sin2 θ√
F

Ludwig 2-I
iy 0 0

ix 0 0

Ludwig 2-II
iy

sinϕ cosϕ sin2 θ√
F

sinϕ cosϕ sin2 θ√
F

ix
cosϕ sinϕ(1−cos θ)√

1−cos2 ϕ sin2 θ

cosϕ sinϕ(1−cos θ)√
1−cos2 ϕ sin2 θ

Ludwig 3
iy

cosϕ sinϕ(1−cos θ)√
1−sin2 ϕ sin2 θ

cosϕ sinϕ(1−cos θ)√
1−sin2 ϕ sin2 θ

F = (1− sin2 ϕ sin2 θ)(1− cos2 ϕ sin2 θ)

Similar procedure is followed if the Huygens source (20-
21) is used; the only difference is that a combination of
two currents Jx and My or Jy and Mx given by (18) and
(19), respectively, is used to calculate the contributions of
the Huygens sources to the cross-polarization in the far field
patterns as shown in Table II (ignoring unimportant sign
changes). The Ludwig 3 definition with a Huygens source
has a radiation pattern with no cross-polarization over all the
space as show in Table II. However, the Ludwig 2-I and 2-II
definitions, as applied to a Huygens source, produce radiation
patterns with significant levels of the cross-polarization in
off-broadside directions along nonprincipal planes. The an-
tenna orientation causes the exchange between co- and cross-
polarization equations derived above. This exchange was taken
into consideration in the formulas summarized in the tables.

IV. EXTENDED CROSS-POLARIZATION DEFINITION

In polarimetric weather radar applications, a planar phased
array antenna is usually located in the y-z plane in the

TABLE II: Huygens source current contributions to far-field
radiation patterns cross-polarization

Definition Jy & Mx Jx & My

Ludwig 2-I sinϕ cosϕ(1−cos θ)√
1−sin2 ϕ sin2 θ

sinϕ cosϕ(1−cos θ)√
1−sin2 ϕ sin2 θ

Ludwig 2-II sinϕ cosϕ(1−cos θ)√
1−cos2 ϕ sin2 θ

sinϕ cosϕ(1−cos θ)√
1−cos2 ϕ sin2 θ

Ludwig 3 0 0

coordinate system due to radar always assume precipitations
in the x-z or y-z plane. This is different from the assumption
used in Ludwig’s definitions, in which the antenna is located
in the x-y plane. Consequently, a new polarization basis needs
to be defined following the same procedure used in Ludwig’s
definitions. In radar applications, vertical (V) and horizontal
(H) polarization bases are the most commonly used. The hor-
izontal axis (y-axis) is parallel to the ground and the vertical
(z-axis) is parallel to gravity. For an infinitesimal electric
dipole oriented vertically in the z-axis, the electric field will be
directed in the θ direction with no cross-polarization as shown
in Table III. If, on the other hand, an infinitesimal magnetic
dipole is oriented vertically in the z-axis, the electric field
will be directed in the ϕ direction with no cross-polarization.
However, if the same infinitesimal dipoles (electric/magnetic)
are horizontally oriented in the y-axis, the electric fields will
have both θ and ϕ components. Therefore, the co- and cross-
polarization components can be calculated using the θ and ϕ
components as shown in Table III.

TABLE III: Co- and cross-polarization unit vectors of far-field
radiation patterns

ûco ûcross

Ie θ̂ ϕ̂

iz
Im ϕ̂ θ̂

Ie cos θ sinϕθ̂+cosϕϕ̂√
1−sin2 ϕ sin2 θ

cosϕθ̂−cos θ sinϕϕ̂√
1−sin2 ϕ sin2 θ

iy
Im cosϕθ̂−cos θ sinϕϕ̂√

1−sin2 ϕ sin2 θ

cos θ sinϕθ̂+cosϕϕ̂√
1−sin2 ϕ sin2 θ

iy Hu cos θ sinϕθ̂+(cosϕ+sin θ)ϕ̂
1+cosϕ sin θ

(cosϕ+sin θ)θ̂−cos θ sinϕϕ̂
1+cosϕ sin θ

iz Hu (cosϕ+sin θ)θ̂−cos θ sinϕϕ̂
1+cosϕ sin θ

cos θ sinϕθ̂+(cosϕ+sin θ)ϕ̂
1+cosϕ sin θ

For dual polarization applications, two crossed dipoles, elec-
tric and/or magnetic, will produce electric fields orthogonal
only in the principal planes (E- and H-planes). On other hand,
the orthogonality of the electric fields of a parallel combination
of electric and magnetic dipoles depends on their orientation.
As shown in Table III, if those parallel dipoles are vertically
oriented along the z-axis, their electric fields (Eθ, Eϕ) are
orthogonal in all directions, but if horizontally oriented along
the y-axis, their fields are only orthogonal in the principal
planes. Another reference used in this work is a Huygens
source (Hu) polarized in the y- or z-direction. Co- and cross-
polarization unit vectors of far-field radiation patterns of those
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Fig. 3: Dual-polarized antenna element in the y-z plane.

sources are summarized in Table III. Following Eq. (9), the dot
product of the co- and cross-unit vectors of the two crossed
Huygens sources is zero in all directions as follows

û(iy) · û(iz) = 0 (22)

Eq. (22) shows that there is perfect orthogonality between
co-polarized radiated fields produced by two orthogonal ports
of an dual-polarized antenna. In polarimetric weather radar
applications, the H- and V-polarization ports could generate
co-polarization components directed in the ϕ and θ direction,
respectively, with very low cross-polarization by using electric
and magnetic current sources vertically polarized in the z-axis.

From Table III, it can be seen that the proposed polarization
basis of orthogonal Huygens sources has rotational symmetry
along the antenna’s broadside, that is, the electric fields
radiated by these sources are orthogonal in all directions. As
a result of the rotational symmetry, the mismatching of the H
and V copolar radiation patterns will be mitigated. Since the
definition of cross-polarization depends on which source is
used as the reference, and also on how that source is oriented,
various proposed definitions can be used for an antenna lying
in the y-z plane, as sketched in Fig. 3.

An additional consideration that must be taken into account
is the effect of mechanical elevation tilt on co- and cross-
polarization definitions. A tilted system creates an error related
to the misprojection of the co- and cross-polar fields onto the
local horizontal and vertical directions. Consider a cartesian
coordinate system xyz, where the y-z plane is perpendicular to
the earth’s surface. This system is referred to as the reference
coordinate. By rotating the reference coordinate system about
the y-axis by some angle δ, a new coordinate system x′y′z′

is obtained which is referred to as the primed coordinate. The
antenna aperture is positioned at the origin of the coordinate
system and placed in the y′-z′ plane with its broadside oriented
along the positive x′-axis as illustrated in Fig. 4. By using the
Euler rotation angle, the unit components (θ̂, ϕ̂), polar angle
(θ), and azimuthal angle (ϕ) can be transferred from one
coordinate system to another. The relation between unprimed
and primed coordinates can be represented by [13], [14].

r̂′θ̂′
ϕ̂′

 =

sin θ′ cosϕ′ sin θ′ sinϕ′ cos θ′

cos θ′ cosϕ′ cos θ′ sinϕ′ − sin θ′

− sinϕ′ cosϕ′ 0

 cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ


sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0

r̂θ̂
ϕ̂


(23)

Fig. 4: Spherical coordinate system for a reference and tilted
system shown in black solid and dotted, respectively.

and sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′

 =

 cos δ 0 sin δ
0 1 0

− sin δ 0 cos δ

 sin θ cosϕ
sin θ sinϕ

cos θ

 (24)

After algebraic simplification, the primed unit vectors can
be represented in terms of the unprimed unit vectors of the
reference coordinate system as follows:

ϕ̂′ =
sinϕ sin δ θ̂ + (sin θ cos δ + cos θ cosϕ sin δ)ϕ̂√

1− (cos θ cos δ − sin θ cosϕ sin δ)2
(25)

θ̂′ =
−(sin θ cos δ + cos θ cosϕ sin δ) θ̂ + sinϕ sin δϕ̂√

1− (cos θ cos δ − sin θ cosϕ sin δ)2
(26)

This simplifies to

ϕ̂′ = sinχ θ̂ + cosχ ϕ̂ or ϕ̂ = sinχ θ̂′ + cosχ ϕ̂′ (27)

θ̂′ = − cosχ θ̂+sinχ ϕ̂ or θ̂ = − cosχ θ̂′+sinχ ϕ̂′ (28)

where

cosχ =
sin θ cos δ + cos θ cosϕ sin δ√

1− (cos θ cos δ − sin θ cosϕ sin δ)2
(29)

Assuming the cases listed in Table III, all components
are represented in terms of primed unit vectors and angles
(θ̂′, ϕ̂′, θ′, ϕ′). Now, both the primed vector components and
the primed direction parameters must be transferred to the
unprimed reference coordinate system using Eqs. (27-29).

V. SIMULATION AND MEASUREMENT RESULTS

As was discussed earlier in this paper, the cross-polarization
level using different definitions depends on the source current
polarization type and its orientation. Wire and printed half-
wave dipoles, a rectangular microstrip patch, a pyramidal horn,
and an open-ended rectangular waveguide, designed using the
commercial software HFSS [15], were used to illustrate Lud-
wig’s definitions. Measurements were conducted to calculate
the co- and cross-polarization components in the principal
and diagonal planes. Numerical simulations and measured
radiation patterns were obtained at an operating frequency
of 3 GHz for all of these antennas. All measurements were
performed in the electromagnetic anechoic chamber (EMAC)
facility at the Radar Innovations Laboratory (RIL). Since
Ludwig’s 2nd and 3rd definitions predict the same radiation
patterns (co- and cross-polarization) in the principal planes, a
comparison between radiation patterns of Ludwig’s 2nd and
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(a) (b)

Fig. 5: Numerical simulations of co- and cross-polarization radiation patterns according to Ludwig’s definitions in the D-plane
of a λ/2 electric dipole antenna polarized in (a) the y-direction and (b) the x-direction.

(a) (b)

Fig. 6: Numerical simulations of co- and cross-polarization radiation patterns in the D-plane of a λ/2 electric dipole antenna
polarized in the z-direction according to (a) Ludwig’s definitions (improper definition) and (b) proper definition (Eθ and Eϕ ).

(a) (b)

Fig. 7: Numerical simulations of co- and cross-polarization radiation patterns according to Ludwig definitions in the D-plane
of a rectangular microstrip patch antenna polarized in (a) the y-direction and (b) the x-direction.

3rd definitions was only conducted in a 45◦ skewed plane.
In addition, a Matlab algorithm was used to calculate the
simulated and measured normalized co- and cross-polarization
patterns in the D-plane. For all cases considered in this work,
Eθ and Eϕ components (magnitude and phase) along with
equations presented in the paper, were used to calculate co-
and cross-polarization radiation patterns.

For its simplicity, a conventional half-wave electric dipole

antenna is considered first in this work. For an electric
dipole, the co-polarization component is placed in any plane
containing the dipole, while the cross-polarization component
is placed in any plane orthogonal to the dipole axis. The cross-
polarization component of an ideal half-wave dipole is zero.
The co-polarization component of its electric field varies as the
sine of the angle from the dipole axis, while it is constant in
any plane orthogonal to the dipole axis. These characteristics
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(a) (b)

Fig. 8: Numerical simulations of co- and cross-polarization radiation patterns according to Ludwig’s definitions in the D-plane
of an open-ended rectangular waveguide antenna polarized in (a) the y-direction and (b) the x-direction.

are the same for any dipole aligned with the x-, y- or z-axis.
A half-wavelength wire dipole antenna, oriented horizon-

tally along the y- and x-axis, is presented in Fig. 5 (a-b). In
this case, the radiated electric field of the dipole, in the far-field
region, has both θ̂ and ϕ̂ components, due to the coordinate
system selected (spherical coordinate system). The co- and
cross-polarization components of the dipole, polarized in the
x- or y-axis, are related to the θ̂ and ϕ̂ components of the
electric fields, according to Ludwig’s definitions. The results
show a considerable cross-polarization off the principal planes
using improper Ludwig equations. According to Ludwig 2-
I, a y-polarized dipole has a radiation pattern with very low
cross-polarization, ideally zero, in the D-plane, as shown in
Fig. 5-a. However, if the same dipole is polarized in the x-
direction, Ludwig 2-II predicts a very low cross-polarization
radiation pattern in the D-plane, as shown in Fig. 5-b. The
results shown in Table I are consistent with these shown in
Fig. 5 (a-b). However, applying Ludwig 2-I and Ludwig 2-
II definitions to the x- and y-polarized dipoles, respectively,
produces significant cross-polarization degradation in the D-
plane. It is shown that the cross-polarization level is about
-10 dB at θ = 45◦ by using Ludwig 2-I with the x-polarized
dipole or Ludwig 2-II with the y-polarized dipole. At the same
angle, Ludwig 3 shows a cross-polarization level with -15
dB for both orientations. This significant error in the cross-
polarization levels is due to the improper use of the definition.

Using the improper definition negatively impacts not only
the cross-polarization component, but also the co-polarization
component off the principal planes. From Fig. 5, it is apparent
that using the improper definition generates a null at θ =
180◦ in the co-polarization component while using Ludwig
3 for an electric dipole polarized either in the x- or y-axis.
On the other hand, Ludwig 2-II with a y-polarized dipole and
Ludwig 2-I with a x-polarized dipole generates a null in the
co-polarization component at θ = 90◦. Similar behavior can be
noticed for the z-polarized dipole. All of these differences can
be avoided by using the proper and most meaningful definition.

If the same electric dipole is oriented vertically in the z-
axis, its co-polarization component will be θ-directed, while
the cross-polarization component with very small value will
be ϕ-directed. In this orientation, Ludwig’s equations predict

inaccurate cross-polarization levels off the symmetry planes
as shown in Fig. 6-a. The spherical coordinate bases Eθ and
Eϕ could be used to represent the co- and cross-polarization
components, respectively, as shown in Fig. 6-b, where the
cross-polarization levels in all the planes are less than -40 dB,
ideally zero. This definition is consistent with results shown
in Table III. Similar results will be seen if a magnetic dipole
is vertically polarized along the z-axis. The only difference
is that the co- and cross-polarization components will be ϕ-
and θ-directed, respectively. According to polarization charac-
terizations of electric and magnetic dipoles that are polarized
vertically, a parallel combination of both electric and magnetic
dipoles, polarized vertically, will be an ideal candidate for
polarimetric weather radar applications that require polarimet-
ric radars transmit and receive both horizontal and vertical
polarizations with very low cross-polarization levels.

The second radiating type used in this work is a rectangular
microstrip patch antenna excited in the TM01 mode using a
coaxial feed. The length and width of the patch are L = 31.7
mm and W = 39.5 mm. The microstrip patch antenna was
printed on one side of the Rogers RT5880 substrate with a
dielectric constant ϵ = 2.2, thickness t = 1.57 mm, and a loss
tangent of tan δ = 0.0009. On the other side of the substrate,
the ground was printed with size of 10 cm x 10 cm.

Use of equivalent magnetic currents around the patch
perimeter reduces the radiation pattern calculation to equiv-
alent slots [7-8]. These slots are considered as magnetic
dipoles (equivalent magnetic currents). The equivalent mag-
netic currents along the radiating edges essentially produce the
electromagnetic radiation. However, the equivalent magnetic
currents along the resonant length sides (non-radiating edges)
weakly radiate (theoretically zero radiation) in the principal
planes. In the H-plane, because the magnetic current densities
on each slot are of the same magnitude but of opposite
direction, the fields radiated by these two slots cancel each
other. Also both slots on opposite walls are 180◦ out of phase,
thus the corresponding radiations cancel each other in the
E-plane. However, these two nonradiating slots degrade the
cross-polarization level away from the principal planes. The
radiation intensity of the two nonradiating slots is lower than
what is produced by the two radiating slots.
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For a linearly polarized patch antenna, if the radiating edges
are located along the y-axis, the slot will be considered as
a magnetic current polarized in the y-direction. However, a
magnetic current will be polarized in the x-direction if the
radiating edges are located along the x-axis. Since the patterns
are the same in the principal planes, Ludwig’s 2nd and 3rd
definitions are compared in a 45◦ skew plane.

Numerical results of co- and cross-polarization radiation
patterns of a rectangular patch polarized in the y- and x-
direction are shown in Figs. 7-a and 7-b, respectively. It is
apparent from Fig. 7-a that the y-polarized patch gives a lower
cross-polarization level, according to Ludwig 2-II, compared
to the other two definitions. According to Ludwig 2-I, the
patch polarized in the x-direction, as shown in Fig. 7-b, has
a better cross-polarization level compared to that of other
definitions. These results are in good agreement with those
shown in Table I. There is an 8 dB difference between the
cross-polarization levels calculated by Ludwig 2-I and Ludwig
2-II at θ = 45◦, and about 4 dB compared to Ludwig 3.

In reality, a linearly polarized patch antenna cannot be
considered the same as a pair of perfect magnetic dipoles
placed at the radiating edges. It provides only an approxi-
mation using the field equivalence principle. In addition, non-
radiating slots do radiate away from the principle E- and H-
planes, with weak field intensity everywhere compared to the
fields produced by radiating slots. Therefore, the patch antenna
can be represented by two magnetic dipoles. However, this
antenna with zero equivalent electric current, does not satisfy
Huygens source conditions, so using Ludwig 3 will degrade
the cross-polarization level.

Another element used is the open-ended rectangular waveg-
uide (OEWG). This antenna is excited with a dominant TE10
mode, and its aperture fields have a cosine taper in the E-
plane and are uniform in the H-plane. This radiating element
is the simplest aperture that can be used in array antennas.
The standard WR-284 rectangular waveguide was used with a
cross section of 72.136 mm x 34.036 mm.

Equivalent magnetic and electric currents are polarized in
the x- and y-direction, respectively, when the electric field
of the TE10 mode over the antenna aperture is polarized in
the y-direction, as shown in Fig. 8-a. On the other hand, if
the aperture electric field is polarized in the x-direction, as
illustrated in Fig. 8-b, the same currents are obtained after
a counterclockwise rotation of 90◦ about the origin. These
two equivalent currents are related to each other by the wave
impedance η

TE
at the waveguide aperture. This approaches the

characteristic impedance of the free space (377 ohms) as the
operating frequency increases above the cut-off frequency. As
shown in Fig. 8 (a-b), the Ludwig 3 definition produces lower
cross-polarization levels for both orientations. The observed
values are not as small as would be expected using Ludwig 3,
which should ideally produce zero cross-polarization.

In addition, one of the other definitions closely matches
results obtained by the Ludwig 3 definition as shown in Fig. 8
(a-b). The reason is that the OEWG antenna cannot be approxi-
mated as a perfect Huygens source. From the field equivalence
principle, equivalent orthogonal electric and magnetic currents
over the OEWG aperture are related by a constant that is

not equal to the characteristic impedance of free space. The
wave impedance for this mode at the waveguide aperture
is greater than the characteristic impedance of free space.
Therefore, the equivalent magnetic current will be greater
than the equivalent electric current. This case is approximately
close to a x-polarized magnetic current source for Fig. 8-a, and
a y-polarized magnetic current source for Fig. 8-b.

Fig. 9 illustrates the co- and cross-polarization patterns in
the D-plane of a printed dipole mounted on a ground plane
polarized in the y- and x-direction. It is demonstrated that
the printed dipole polarized in the y-direction, as shown in
Fig. 9-a, has a lower cross-polarization level, according to
Ludwig 2-I. However, radiation patterns of the x-polarized
printed dipole have a lower cross-polarization level according
to the Ludwig 2-II definition, as shown in Fig. 9-b, compared
to other definitions. This is also agree with the earlier analysis
summarized in Table I. Ludwig 3 produces about 5 dB of
degradation in the cross-polarization level compared to when
the proper definition at θ = 45◦ is used. On the other hand,
the cross-polarization levels using Ludwig 2-II in Fig. 9-
a, and Ludwig 2-I in Fig. 9-b, are very high compared to
that calculated according to Ludwig 2-I and Ludwig 2-II,
respectively, in the same figures. This difference is about 10
dB. This inaccuracy in the cross-polarization levels has a large
impact on antenna performance in applications requiring very
low cross-polarization levels. This is the case in polarimetric
weather radars that require less than -40 dB cross-polarizations
for ±45◦ scan volume in the E-, H-, and D-planes [16].

To verify the simulated results, Eθ and Eϕ components of an
electric far field radiated by a microstrip patch and a pyramidal
horn antenna are measured, both in amplitude and phase, in
the D-plane, as shown in Figs. 10 and 12. These components,
obtained from the far-field chamber measurements, were then
used to calculate the co- and cross-polarization components
based on Ludwig’s definitions. Using measured Eθ and Eϕ, the
calculated co- and cross-polarization components are shown
in Figs. 11 and 13 for the rectangular microstrip patch and
pyramidal horn antennas, respectively. In Fig. 11 (a-b), ac-
cording to the direction of patch antenna polarization, cross-
polarization levels are different according to the used Ludwig’s
definition. The same can be observed in Fig. 13 (a-b) from the
results using the pyramidal horn antenna.

As explained early in this paper, Ludwig 2-I is defined
according to the reference field radiated by a linearly polarized
electric dipole along the y-axis. However, the reference field
radiated by a linearly polarized electric dipole along the x-axis
defines Ludwig 2-II. Ludwig’s third definition is defined by
the E-field radiated by a Huygens source. With an ideal case,
these analytical expressions predict zero cross-polarization. In
practice, in addition to intended polarization currents, other
currents will contribute to cross-polarization. For simplicity,
a Ludwig 2-I is considered as a reference definition and
is used with an ideal linearly polarized source such as an
electric dipole polarized in the y-direction. This dipole is
simulated in HFSS with a simple feed structure (a lumped port
feed) to reduce its impact. The simulated cross-polarization
values are very low, and they are comparable to analytical
values. Several antenna types designed at 3 GHz, including
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(a) (b)

Fig. 9: Numerical simulations of co- and cross-polarization radiation patterns according to Ludwig’s definitions in the D-plane
of a printed dipole antenna polarized in (a) the y-direction and (b) the x-direction.

(a) (b)

Fig. 10: Measured Eθ and Eϕ components in the D-plane of a microstrip patch antenna (a) amplitude (dB) and (b) phase (◦).

(a) (b)

Fig. 11: Measured antenna patterns of a microstrip patch antenna using Ludwig’s definitions when the current source is polarized
in (a) the x-direction and (b) the y-direction.

(a) (b)

Fig. 12: Measured Eθ and Eϕ components in the D-plane of a pyramidal horn antenna (a) amplitude (dB) and (b) phase (◦).
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(a) (b)

Fig. 13: Measured antenna patterns of a pyramidal horn antenna using Ludwig’s definitions when the current source is polarized
in (a) the x-direction and (b) the y-direction.

wire dipole, printed dipole, narrow-side-fed rectangular patch,
wide-side-fed rectangular patch, single-polarized square patch,
dual-polarized square patch, and dual-polarized crossed patch
were used in this study to demonstrate the errors induced
by improper use of Ludwig’s definitions. These antennas are
numbered from 1 to 7, respectively, as shown in Fig. 14.

The induced error (∆) by improper use of Ludwig’s defini-
tions represents the difference between the cross-polarization
levels using the proper definition and other improper defini-
tions. For an ideal linearly y-polarized source, Ludwig 2-I
is considered as a reference definition and Ludwig 2-II and
Ludwig 3 are improper ones.

For the simple wire dipole, using improper definitions gives
about 35 dB and 41 dB errors, respectively, according to
Ludwig 3 and Ludwig 2-II as shown in Table IV. In this case,
using the right definition is very important. Cross-polarization
levels are calculated in the D-plane at θ = 45◦. For the printed
dipole, there is a 12 dB error, according to the L 3 definition,
and 18 dB error, according to the Ludwig 2-II definition. From
Table IV, it is apparent that these errors are reduced to about
4 dB and 8 dB, respectively, according to the L 3 and Ludwig
2-II definitions for the patch antennas. Because of the antenna
geometry or the feeding structure, the leakage radiation will be
produced with large component perpendicular to the intended
polarization. This mechanism will reduce the error.

Fig. 14: Geometry of proposed antennas: wire dipole (1),
printed dipole (2), narrow-side-fed rectangular patch (3),
wide-side-fed rectangular patch (4), single-polarized square
patch (5), dual-polarized square patch (6), and dual-polarized
crossed-patch antenna (7).

Since the cross-polarization of the antenna element affects
the cross-polarization of the antenna array, a unit cell antenna

TABLE IV: Errors in cross-polarization levels caused by
improper use of Ludwig’s definitions for several antennas
numbered from 1 to 7, respectively, as shown in Fig. 14

Error
∆ (dB) An. 1 An. 2 An. 3 An. 4 An. 5 An. 6 An. 7

L 2-II 40.7 18.0 8.6 8.6 8.4 7.6 8.5

L 3 34.7 12.5 2.4 4.3 4.2 4.4 5.2

Fig. 15: Near-field chamber setup for electronic scanned
radiation patterns of an array 4x4 elements embedded in an
array of 8x8 elements at 3 GHz. (b) Top-view of the 8x8
antenna array and unit cell element [16].

element should be designed to attain a minimum level of
cross-polarization, not only at broadside, but also within the
angular scan range. Typically, active phased array antennas are
providing azimuth and elevation electronically scanned ranges
from −45◦ to +45◦. Within this angular scan range the cross-
polarization level should be as low as possible.

To extend the theory to a dual-polarized antenna element
and array, a high performance antenna element with dual-
polarization, wide scan angle, and low cross-polarization levels
for phased array radars, designed for fully digital multifunction
phased array radars in [16], is used. This antenna requires
very low cross polarization level of 40 dB in the scanning
range. This is one of our motivations to revisit the cross-
polarization definitions and correctly choose the proper cross-
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(a) (b) (c)

Fig. 16: Measured radiation patterns of the unit cell antenna at 3 GHz with H-polarization; co- and cross-polarization magnitude
in dB according to (a) Ludwig 2-I, (b) Ludwig 2-II (second row), and (c) Ludwig 3.

(a) (b) (c)

Fig. 17: Measured radiation patterns of the unit cell antenna at 3 GHz with V-polarization; co- and cross-polarization magnitude
in dB according to (a) Ludwig 2-I, (b) Ludwig 2-II (second row), and (c) Ludwig 3.

polarization definition will be used. The antenna architecture
and characteristics, in element or array level, was illustrated in
[16]. Near-field chamber setup for electronic scanned radiation
patterns of an array 4x4 elements embedded in an array of 8x8
elements at 3 GHz as shown in Fig. 15 (a-b).

Measured radiation patterns at 3.0 GHz for H- and V-
polarizations of the unit cell on a λ/2 ground plane to
minimize the possibility of grating lobes were conducted. The
co- and cross-polarization radiation patterns of the unit-cell
antenna were calculated using all Ludwig definitions for both
polarizations. Fig. 16 shows that for the H-polarization the
Ludwig 2-I gives the lower cross polarization compared to

others. For V-polarization, lowest cross-polarization level is
obtained by using Ludwig 2-II as shown in Fig. 17. The
induced error by improper definitions were calculated and pre-
sented in Table V after normalize all cross-polarization values
to the lowest value obtained by suing the proper definition.
From the table, the difference between them looks to be of
the order of 7 dB or 12 dB. By further analyzing the cross-
polarization radiation patterns of the dual-polarized element
antenna, it is obvious that the E- and H-planes would not show
the maximum values of the cross-polarization. However, in
the diagonal plane, the differences in cross-polarization levels
clearly identifiable by the plots in Figs. 16 and 17.
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(a) (b) (c)

Fig. 18: Measured polarimetric 4x4 planar phased array radiation patterns with H-polarization at broadside; co- and cross-
polarization magnitude in dB according to (a) Ludwig 2-I, (b) Ludwig 2-II (second row), and (c) Ludwig 3.

(a) (b) (c)

Fig. 19: Measured polarimetric 4x4 planar phased array radiation patterns with V-polarization at broadside; co- and cross-
polarization magnitude in dB according to (a) Ludwig 2-I, (b) Ludwig 2-II (second row), and (c) Ludwig 3.

Similarly, the applications are extended to the active phased
array antenna with V- and H-polarizations. The used array is
4X4 elements embedded in an array of 8x8 elements with a
uniform distribution and constant phase difference between the
elements. Planar near-field antenna measurements have been
performed in the NF chamber. The same conclusion can be
noticed for the broadside angle in the diagonal plane.

Figs. 18 and 19 show the co- and cross-polarization radiation
patterns of the broadside beam of H- and V-polarizations. It
is apparent that the lowest cross-polarization levels can be
obtained by Ludwig 2-I for the H-polarization and by Ludwig
2-II for the V-polarization. The errors between the cross-

polarization levels obtained by different definitions look to
be of the order of 6 dB and 5 dB for H-polarization and V-
polarization, respectively, as shown in Table V. For the scanned
beam from the broadside direction, the cross-polarization will
be higher and the induced errors between the definitions will
be large. Since the used dual-polarized antenna does not have
a perfect symmetry property with respect to the two feeding
ports, the radiation patterns of both polarizations will not show
the same level of the cross-polarization. In order to meet the
requirements mentioned up, a square antenna design with a
complex multi-layer structure and complex feeding network
is required [16]. This complexity in the feeding and structure
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TABLE V: Errors induced by using improper definitions of
the dual-polarized element antenna and active dual-polarized
scanned array antenna

Pol Ludwig defi. Antenna element Array
Broadside scann

H
L 2-I
L 2-II
L 3

0
11
7

0
8
5

V
L 2-I
L 2-II
L 3

12
0
7

6
0
4

causes undesired radiation which will degrade the cross-
polarization levels. In other word, instead of having a prefect
magnetic current linearly polarized in one direction, another
undesired magnetic current polarized in the other direction.
This undesired current will degrade the used definition derived
based on the perfect linearly polarized currents.

VI. CONCLUSIONS

Ludwig’s definitions have been intensively discussed and
clarified. These definitions were derived assuming a certain
radiating source polarized in a specified direction (in the x-
y plane) as a reference to define co- and cross-polarization
components. However, in real applications, antennas can be
located in the x-y, x-z, or y-z plane. In this contribution, the
co- and cross-polarization definitions have been generalized
by using different antenna sources located in the y-z or x-z
plane to complement Ludwig’s definitions.

In addition, this work illustrates the degradation that can
occur in the cross-polarization level if the improper definition
is used. This degradation can be significantly attributed to the
field projection, which is mainly dependent upon the definition
used. Based on the current definitions, Ludwig 2 assumes
perfectly linear-polarized radiating sources, oriented in the x-
or y-direction with zero component in the orthogonal direction.
On the other hand, Ludwig 3 assumes a radiating source that
satisfies Huygens conditions. In practice, these assumptions
are difficult to satisfy. Most practical radiating elements have
another coupled current in the orthogonal direction which does
not satisfy the Huygens conditions. Therefore, to demonstrate
the new extended formulation presented in this paper, ex-
tensive tradeoffs using different radiating sources in different
planes have been used. For linearly-polarized practical anten-
nas, errors will be introduced in cross-polarization calculation
because of deviations from the ideal antennas used to derive
Ludwig definitions, in contrast with real antennas. Using the
proper definition will produce cross-polarization with lower
values only if the antennas are close to ideal conditions.

For an antenna oriented in planes other than the x-y plane,
the proper definition of the co- and cross-polarization needs to
be defined based on the reference type. For example, the spher-
ical coordinate bases (Eθ and Eϕ) are highly recommended to
define the co- and cross-polarization components of a electric
or magnetic dipole polarized vertically in the z-axis.

From an educational point of view, this paper revisits
Ludwig’s formulations of the co- and cross-polarization. The

described work provides supplementary material for teaching
graduate level antenna theory and radar, and thus serves as a
good reference for faculty members, antenna engineers, and
graduate students. Ludwig’s definitions are primarily defined
for an infinitesimal electric dipole, infinitesimal magnetic
dipole, or Huygens antenna. Each of these definitions is
applied to a corresponding optimal source, based on its type
and orientation.

VII. APPENDIX

The corresponding E-field components that are due to Js
and/or Ms, polarized in the x- and/or y-direction, can be
calculated using [11-12]

Eθ ≃ −jβ e−jβr

4πr
(Lϕ + ηNθ) (30)

Eϕ ≃ +
jβ e−jβr

4πr
(Lθ − ηNϕ) (31)

where Nθ, Nϕ, Lθ, and Lϕ are given in [11-12]
By specifying the equivalent current density, either Js of

a wire antenna, or Js and Ms over the close surface of
an aperture antenna, the radiated E-field components can be
determined. The equivalent current densities Js and Ms over
S of the aperture are calculated using [11-12]

Js = n̂ × Ha , Ms = −n̂ × Ea (32)

where n̂ = unit vector normal to the surface S, Ea and Ha are
total electric and magnetic fields over the surface S.

For electric and magnetic currents Ie and Im, (30-32) reduce
to line integrals. The far-zone components of the electric field
of an electric current, oriented along the x-axis, are given by

Eθ ≃ −jηβ e−jβr

4πr
cos θ cosϕ

∫
C

Iex ejβr
′ cosψdl′ (33)

Eϕ ≃ +
jηβ e−jβr

4πr
sinϕ

∫
C

Iex ejβr
′ cosψdl′ (34)

and when the same electric current is oriented in the y-axis,
the far-zone components of the electric field are given by

Eθ ≃ −jηβ e−jβr

4πr
cos θ sinϕ

∫
C

Iey ejβr
′ cosψdl′ (35)

Eϕ ≃ −jηβ e−jβr

4πr
cosϕ

∫
C

Iey ejβr
′ cosψdl′ (36)

For a magnetic current Im oriented along the x-axis, the
far-zone components of the electric field are given by

Eθ ≃ +
jβ e−jβr

4πr
sinϕ

∫
C

Imx ejβr
′ cosψdl′ (37)

Eϕ ≃ +
jβ e−jβr

4πr
cos θ cosϕ

∫
C

Imx ejβr
′ cosψdl′ (38)

and when this magnetic current is oriented in the y-axis, the
far-zone components of the electric field are

Eθ ≃ −jβ e−jβr

4πr
cosϕ

∫
C

Imy ejβr
′ cosψdl′ (39)

Eϕ ≃ +
jβ e−jβr

4πr
cos θ sinϕ

∫
C

Imy ejβr
′ cosψdl′ (40)
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