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Abstract

The characterization of the constitutive properties of materials is an important step

in the development of modern RF devices, especially at mm-wave frequencies or in

systems that incorporate materials whose performance varies with frequency or the

angle of the impinging electrical field. This thesis discusses the implementation of

three material characterization systems designed by the Phased Array Antenna Re-

search and Development (PAARD) group at the Advanced Radar Research Center

(ARRC) for taking material measurements under different test configurations. For

each system, the majority of the work done was in creating a graphic user interface

(GUI) in Labview that would facilitate rapid measurements by providing an intuitive

control software for the user. The three systems work for a variety of different ap-

plications: an S-band waveguide setup for measuring isotropic materials, a C-band

three-probe free-space system for measuring anisotropic materials, and a W-band

free-space system. All three systems utilize the Nicolson-Ross-Weir (NRW) or Smith

algorithm for material parameter extraction. Various other methods exist for material

characterization but the NRW method provides relatively precise measurements over

a broad band with minimal computational requirements. The importance of material

parameters and the definitions of isotropy/anisotropy will be discussed first, followed

by the method through which the material parameters are calculated. After this the

specifications for each system that was developed are discussed including the physical

test setup, the algorithm(s) that are used, the formation of the control software, the

calibration techniques used, and the results of material tests.

xi



Chapter 1

Introduction

1.1 Motivation

As technology has improved in the field of radio engineering and systems operate

at increasingly higher frequencies designs require better performance in a smaller

package. This has led engineers to carefully consider the performance of the substrates

used in RF devices and antennas, as well as manipulate materials to operate optimally

over a frequency or angular range. By introducing anisotropic or frequency-selective

behavior into a dielectric, engineers can meet more stringent requirements or create

heretofore unrealizable devices. A byproduct of these new material technologies is the

necessity for material-characterization systems that can provide accurate and timely

measurements over the frequency band of interest. In each case, the performance of

the materials is quantified by its electric permittivity and magnetic permeability, both

of which are important considerations for engineers designing an RF device. When

using the NRW method, these two parameters are extracted from the transmitted and

reflected components of an incident electromagnetic wave. The three characterization

systems that will be discussed each cover a different band and are specialized for a

specific application. One of the scanners, the three-probe anisotropic scanner, was

previously designed by Alex Stringer [2] and upgraded by Joel Love [10]. The author’s
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primary contribution to this system was the control software that transformed this

system from a specialized tool usable only with a thorough understanding of its

operation and consultation with an instruction manual to a system that is ubiquitous

at the ARRC. The mm-wave scanner was originally designed for characterization and

calibration of automotive radar, and the author modified its software to allow for

material measurements in addition to its original functionality. The waveguide setup

was implemented by the author and other members of the PAARD group specifically

for material characterization. For each of these systems an emphasis was placed on

ease of use, expedited measurements, and reliability.

1.2 Literature Review

Determining the constitutive parameters of a material, the complex permittivity and

permeability, is paramount for understanding how electromagnetic waves will prop-

agate through it. Measuring the permittivity and permeability also allows for the

calculation of the electric and magnetic loss tangents; respectively, which are defined

as the ratio of the imaginary and real component of the parameter and indicate the

amount of energy that will be dissipated in the material [1].

For most materials the behavior is assumed to be constant as the angle of an

impinging electromagnetic wave varies. These are known as isotropic materials. The

characterization procedure for these materials is straight forward and there are a mul-

titude of methods that can be used to extract the material parameters [11]. These

2



include the free-space transmission/reflection method [6, 12, 13] , guided wave trans-

mission/reflection [14] [15], the inductance/capacitance method [16], and the resonant

method [17]. The transmission line method is particularly commonly used due to its

relative ease of implementation and the broad frequency band it can operate over

[18].

However not all materials behave in this manner. Some materials have constitutive

parameters that depend directly on the direction of the impinging field, and these are

known as anisotropic materials [7]. Instead of being able to reduce the permittivity

and permeability to a single number, each value instead reduces to a 3x3 tensor that

relates the x-y-z direction of the applied field to a parameter value. While examples

of this behavior can be found in nature, such as in crystaline structures and ionized

gases, the majority of materials with this property are engineered to behave in this

way.

Materials can also be described as dispersive, which means that its constitutive

parameters vary with respect to the frequency of the applied field [7] [19]. Any

material that displays properties that are not normally found in nature can be referred

to as ”metamaterials,” and the study of their potential applications in RF have been

growing in popularity with examples such as [20], [21], and [22]. One of the first

investigations into materials with such abnormal behavior was done by V.G Veselago,

who explored the theoretical behavior of substances with a negative permittivity and

permeability in [23].

For these materials, there exist multiple methods to evaluate their parameters;

but they all have trade-offs to consider when choosing which method to use [24].

3



These considerations include the space required and the environment in which the

measurements are being taken, whether or not the characterization process leaves the

material intact, the number of samples and measurements required, and the thickness

of the material [25] [26] [27]. Methods exist for extracting material parameters from

EM simulations [28], analytically [29], and from physical measurements [30] [31].

While the potential uses of these materials are exciting, their complex behavior

presents several challenges to fully characterize them. Because these materials are

designed to exhibit different performance over frequency and angle, the chosen mea-

surement system must also be able to operate over a broad band and reliably change

the angle of incidence [32] [33] [34].

For all three automated systems the transmission/reflection method, either guided

or free-space, was chosen. When using this method the VNA used for measurements

must be calibrated to provide accurate results. The calibration methods used are the

transmission-reflection(TR), described in [13], and transmission-reflection-line (TRL),

described in [35]. The procedures for calibration of VNAs is well documented, as

discussed in [36], [37], and [38].

After the VNA is calibrated, the material parameter extraction algorithm can be

applied. For all of the systems, the chosen method of material extraction was the

Nicolson-Ross-Weir, described in [39] and [40], and the Smith algorithm [41]. These

methods are easy to implement and are less computationally intensive than iterative

methods. However, these methods can produce multiple solutions, which leads to

uncertainty in the extracted results. This is particularly important when evaluating

samples of a material that are electrically large (t > λ/2) [42] [34]. In these cases,

4



other methods can be applied, including the Kramers-Kronig integral [43] [44] [45],

phase unwrapping [46] [47], and other iterative methods as discussed in [48] and [49].

Extraction of material parameters does not depend on the chosen algorithm alone.

The hardware chosen as well as the software controlling it have a large effect on the

quality and quantity of measurements. There are multiple examples of such systems

in the literature that perform in a variety of ways. Some previously designed systems

utilize specially made transmission line structures to characterize materials, such

as [50] and [51], coaxial lines [52], and waveguides as discussed in [53] and [54].

Additionally, some systems have automated control software to allow for multiple or

complex measurements to be taken with greater accuracy and repeatability such as

in [55], [56], and [57].

1.3 Problem Statement

The key objective of this work is to create control software for each of the three ma-

terial characterization systems to allow for rapid, convenient, and accurate measure-

ments of material parameters. By creating multiple systems the goal is to facilitate

measurements of a great variety of different materials over many frequency bands.

The previous design of the anisotropic scanner allowed for measurements to be taken

but the user interface was obtuse and forced a linear operation of the measurement,

steps that wasted time. The main problem addressed is the need for convenient sys-

tems that can easily characterize a material, frequency selective surface, or radome

5



over a varied set of performance goals while providing highly accurate and repeatable

results.

1.4 Contribution

The contributions by the author are detailed in this section. The author made user

interfaces to control three material characterization systems that included controls for

the calibration, execution, and display of measurements taken. The author performed

an error analysis on potential sources of error found in the measurement systems. A

new algorithm was implemented for the three-probe anisotropic scanner. A prototype

waveguide transition was fabricated to explore expanding the variety of materials

usable by the waveguide material characterization system. Finally, measurements

were taken with each of the systems to verify functionality and accuracy.

1.5 Organization of the Thesis

The organization of the thesis is as follows: Chapter 2 will cover the background

of the project, starting with a discussion of material properties and the importance

of permittivity and permeability, as well as a definition of isotropy and anisotropy.

This is followed by an examination of the most common material characterization

processes in use today, including the resonance, waveguide, and free-space methods.

Chapter 3 will cover the implementation of the rectangular waveguide based scanner

will be discussed. This will encompass the system description, the algorithms used

to extract material parameters, system calibration, and user interface development.
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This is followed by an analysis of potential error sources in this system. Additionally,

theoretical work done for the use of square waveguides for the characterization of

anisotropic materials will be discussed. Chapter 4 will focus on the implementation

of the two free-space scanners. It will follow a similar format as the previous chapter,

with a review of the hardware setup, calibration methods, software design, and an

overview of measured results. Finally, Chapter 5 will present conclusions about the

project as well as propose possible areas for future work or improvements.
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Chapter 2

Background

2.1 Introduction

This thesis primarily concerns the automation of three systems to characterize the

constitutive parameters of materials. For this reason it is important to then first

address how we define the different parameters we will be measuring, such as per-

mittivity, permeability, dispersion, and isotropy/anisotropy as they will be discussed

extensively herein. The ways that these parameters impact the performance of a ma-

terial when used in an RF device is also discussed. Additionally, the theory behind

commonly used material characterization methods will be examined.

2.2 Material Properties

2.2.1 Electrical Properties

The performance of a material when exposed to an electromagnetic wave can be

described by its permittivity (commonly symbolized with ε) and permeability (written

as µ). Materials that are used as dielectrics are composed of atoms whose positive and

negative charges are ”bound,” that is they do not move freely through the material

like they would in a conductor [7]. However, these charges can still reorient themselves
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to align with an applied field, a process that results in a vast amount of infinitesimal

dipoles. These two parameters, permittivity and permeability, then reflect the ability

of those charges to align in a material when an electric or magnetic field impinges

on it, respectively. Throughout this thesis when referring to these two they will be

described relatively. For permittivity, this means that a given epsilon value will be

the relative permittivity with respect to a vacuum. This is the fundamental constant

ε0 = 8.854× 10−12 (Farads/meter). The permeability of a vacuum is µ0 = 4π × 10−7

(Henries/meter). These two values are used when denoting the relative permittivity

and permeability of a material, and they are written as:

εr =
ε

ε0
(2.1)

µr =
µ

µ0

(2.2)

Often these relative values are written without the subscript r, and unless specified

otherwise it can be assumed that ε and µ represent their relative values. Additionally,

ε is often referred to as the dielectric constant of a material.

Both of these values are composed of a real and imaginary component and are

traditionally written:

ε = ε′ − jε′′ (2.3)
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where ε′ is the real part of the permittivity and ε′′ is the imaginary component

of the permittivity, also known as the dielectric loss factor. As the name indicates,

the imaginary component refers to the energy that is dissipated in the material. The

permeability has a corresponding representation:

µ = µ′ − jµ′′ (2.4)

where µ′′ is the magnetic loss factor, corresponding to the energy that is dissipated
in the material due to interactions with the magnetic field.

Another important material characteristic that will be discussed is the loss tan-

gent. Simply, it is the tangent of the angle formed in the complex coordinate system

from the real and imaginary components of ε and µ [58]. It is written:

tan(δ) =
ε′′

ε′
(2.5)

tan(δm) =
µ′′

µ′
(2.6)

Two other parameters that will be important in our discussion of material parameters
are the wave impedance and refractive index. The wave impedance η is used to

express the ratio of electric to magnetic field components and is described in Pozar’s

Microwave Engineering [1] as:

Hy =
1

η
(E+e−γz − E−eγz) (2.7)

Where γ is defined as:
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γ = jω
√
µε = jω

√
µε′(1− jtan(δ) (2.8)

While the wave impedance is normally a complex value, often a lossless case is

assumed which allows for its representation to reduce to:

η =

√
µr
εr

(2.9)

The wave impedance of free space is a fundamental constant and is:

η0 =

√
µ0

ε0
= 377Ω (2.10)

The refractive index is a measure of how much slower a wave propagates through

a medium compared to a vacuum. It is defined as:

n =
√
µrεr (2.11)

These terms are used to describe the behavior of electromagnetic waves when

between the interface of two different materials. This is important to discuss because

the algorithms used to extract material parameters, which will be expanded on in

later chapters, primarily rely on recording the transmitted and reflected components

of a wave. The first case that will be discussed, derived from the work of [1] and [7], is

a wave propagating through a vacuum and impinging upon a homogeneous medium

with a dielectric constant that is not equal to 1, as shown in Fig. 2.1. After this,
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the formulations will be expanded to form a general representation of a wave at the

interface of two materials with unequal dielectric constants.

Figure 2.1: Reflected and transmitted components of wave at normal incidence be-
tween vacuum and material [1]

The reflected and transmitted components of a wave can be written in terms of

the wave impedances of the two materials at an interface. The reflected component

will be represented as Γ and the transmitted component is written as T. For free

space, this impedance is η0. By solving the boundary conditions for the fields at the

interface of two materials, as shown in [1] section 1.7, we are left with two equations

relating T and Γ to the wave impedance of the materials:

Γ =
η − η0
η + η0

(2.12)

T = 1 + Γ =
2η

η + η0
(2.13)
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Next, we will generalize these equations for any interface between two materials,

as shown in 2.2.

Figure 2.2: Reflected and transmitted components of wave at normal incidence [2]

The generalized equations are:

Γ =
η2 − η1
η2 + η1

(2.14)

T = 1 + Γ =
2η2

η2 + η1
(2.15)

Using equation 2.9, we can then rewrite these two general equations in term of

the constitutive parameters of both materials at the interface:

Γ =

√
µr2εr1 −

√
µr1εr2√

µr2εr1 +
√
µr1εr2

, (2.16)

T =
2
√
µr2εr1√

µr2εr1 +
√
µr1εr2

. (2.17)

Because we are able to represent the transmitted and reflected components of a

wave solely in terms of the material parameters of the two substances at the interface,
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it can be inferred that if one was able to collect information about how an applied

field behaves, then the material parameters can be extracted.

2.2.2 Isotropy and Anisotropy

Another important parameter when discussing the behavior of a material is isotropy

and anisotropy. Isotropic materials are those whose characteristics remain constant

for any direction of an impinging field, whereas anisotropic materials are those whose

characteristics rely directly on the direction of the applied field. Because of this

anisotropic behavior, these materials must be represented with a 3× 3 tensor corre-

sponding to the material characteristics with respect to each of the principle planes

[7]:

[
ε̄

]
=


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (2.18)

[
µ̄

]
=


µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

 (2.19)

This behavior is not common to materials found in nature, occurring mainly in

crystals, but is more often seen in engineered materials. This includes composites

composed of fibers, particulates, or flakes that are aligned along an axis during man-

ufacturing, as well as honeycomb or tube-filled materials [58]. These materials can
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have dramatically different behavior than those composed of a homogeneous medium,

and require careful characterization over a range of incident angles to be used effec-

tively in RF devices.

2.3 Conventional Material Characterization Methods

All of the systems that will be described in this thesis utilize the transmission/reflection

method of material characterization. This can be divided into two subsets: transmis-

sion line and free-space techniques. Both of these methods utilize the transmitted and

reflected components of an applied wave to extract material parameters over a fre-

quency range that is limited primarily by the hardware of the test set-up and the size

and composition of the material-under-test. Two other primary methods for material

characterization exist: the resonant, with examples of the method used practically in

[59] and [60], as well as the inductance/capacitance method, with a good overview

given in [61].

2.3.1 Transmission Line Transmission/Reflection

The transmission line method of material characterization is widely used for a variety

of reasons: namely, that it is relatively simple [14], offers broad-band performance,

utilizes a reasonably sized test set-up (especially in comparison to free space methods),

and allows for the measurement of a variety of substances, such as heterogeneous

or composite materials [54] [62], liquids [63] [64] and moist materials [65], powders

[66] including nano-ferrite powders [67], and gasses [68], in addition to conventional
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samples of solid dielectric material. This technique has also been in use for many

decades, with Roberts and von Hippel utilizing it in 1941 to characterize materials

for centimeter wavelengths [3] as shown in Fig. 2.3, and a vast quantity of discussions

about and improvements to the method in the following years.

Figure 2.3: Early example of the ”hollow pipe” method [3]

This method does have some drawbacks: namely, that unlike the free-space method

materials can only be measured at broadside (although anisotropic materials can be

evaluated along the ”on-diagonal” components eg. εxx εyy [8]) and often creation of

a sample can be destructive, such that the measured material under test will not be

usable in the construction of an RF device. Additionally, the material samples are
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sensitive to any gaps existing between the sample itself and the wall of the transmis-

sion line, although this can be corrected for [69].

Figure 2.4: Example of simple test setup with 3-layer composite sample [4]

The systems that are used for this method are generally quite straightforward.

A wave is injected in to a transmission line, normally a waveguide or coaxial cable,

that has one or two ports. Within this line, there must be a component that is

able to contain the sample, as well as ensure that there exist no gaps between the

transmission line and the material under test. Each port is then connected to a

network analyzer. From here, an electric field can be applied to one port and the

resultant outputs measured, upon which a material parameter extraction algorithm

can be applied. These algorithms use the magnitude and phase of the transmitted

and reflected components of the applied field to extract the constitutive parameters

of materials.
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2.3.2 Free-Space Transmission/Reflection

Free-space measurement of materials has been extensively researched for the better

part of the last century. This work started in earnest during the Second World War,

during which RADAR played a critical role in the conflict and a race to develop and

mature technologies intensified. One of the first examples of this technique in practice

is found in [70], wherein several examples of different early measurement architectures

as well as methods for material parameter extraction are explored. Other works in the

following years such as [71] and [72] further expanded upon this. An early example

of one such test setup is shown in 2.5. More recent work on the subject is shown in

[73], [74], and [75].

Figure 2.5: Early test apparatus for free-space method [5]
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While this method is fairly simple to implement and offers broadband measure-

ments, it still presents some drawbacks. The main difficulties in implementing this

method come from the antennas that are used as measurement probes, and from the

size of the setup itself. In terms of the antennas being used, it is important that

two criteria must be met within the setup: the entirety of the antenna beam must

be contained within the sample and the antenna must also be in the far-field region

of transmission. When implementing the extraction algorithms, the assumption is

made that all of the antennas energy is striking the material under test. If the an-

tenna beamwidth is wider than the sample, then some of the energy transmitted may

go directly to the receiving antenna, which skews the measured results. Additionally,

if the beam strikes near the edges of the sample, diffraction may occur, which can

result in unexpected and inaccurate measurements. For this reason, the rule of thumb

for these measurements is that the sample should be at least 1.5 times bigger than

the antenna beamwidth at the measurement distance [76] [77].

With respect to the far-field requirement, the extraction algorithms assume that

a plane wave is impinging upon the material under test. The far-field distance of an

antenna varies widely depending upon its type and the frequency of interest, with

some useful guidelines shown in [78]; however, it is generally understood to be the

distance from the antenna in the primary direction of propagation at which a constant

phase wave is present. If the antenna is not at this distance, errors will occur in the

measurement, particularly if the sample is measured at oblique incidence. This is the

reason that a lens is often used in concert with the feed antenna, as it provides both

a focusing effect and helps to ensure a planar phase front impinges upon the sample
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[58]. An example of a simple oblique incidence system that utilizes spot-focused lens

horn antennas is shown in Fig. 2.6.

Figure 2.6: Free-space measurement method with lens antennas [6]

A final consideration for the sample is its thickness. While this is primarily related

to the chosen extraction algorithm, it is still useful to explore while discussing the

test set-up. The original Nicolson-Ross-Weir [39] [40] method has an issue in that

it produces multiple solutions when the sample thickness approaches multiples of

one-half of the test wavelength. If the sample is electrically thick (e.g. thickness

> λ/2), this will have to be taken into account, although in recent years, this issue

has been resolved through the use of a root search to find resonance points [34], the

Kramers-Kronig integral [79], phase unwrapping [47], or iterative methods [80] [81].

Considering all of this, the other major difficulty in implementation of a free-

space measurement system is its overall size. Factoring in the size of the sample

and the size of the antennas can lead to very large test configurations, especially
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for testing at relatively low frequencies. For example, in Focused Beam Methods,

John Schultz gives an example of a system for material characterization at 500 MHz

which incorporates dielectric lenses that are 6ft. in diameter [58]. While lenses and

dielectric rod antennas are useful for reducing the required size of the system, the

available space for a test system must be considered when deciding if the free-space

material characterization method is the correct method for the application.

2.4 Summary

In this chapter, the characteristics of materials that will be measured are discussed,

including permittivity and permeability, the behavior of waves at a material interface,

and isotropy/anisotropy. These parameters and characteristics will be referenced

throughout this thesis. Derivations for these parameters are presented along with

their sources. The relationship between the physical composition of a material and

its effects on an impinging electromagnetic wave is explored. Additionally, two of the

major measurement methodologies for material characterization are discussed with

an overview of their implementation and merits given. These are the transmission line

and free-space methods, both of which are based on transmission and reflection of an

applied field upon a material under test. These early examples are a good illustration

of the advancement that has occurred in measurement technologies in the preceding

decades.
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Chapter 3

Waveguide Method for Material Characterization

3.1 Introduction

In this section, the actual implementation of the waveguide-based system here at

the ARRC will be described. The physical setup will be shown and discussed, as

well as descriptions of the calibration and material parameter extraction methods.

Finally, development of the user interface and measured results will be discussed. An

additional section discussing attempted implementation of a rectangular to square

waveguide transition will follow. Although this was never successfully physically

realized, extensive simulations were performed and they will be discussed.

3.2 Rectangular Waveguide for Characterization

of Isotropic Materials

The implementation of a guided wave material characterization system for the Ad-

vanced Radar Research Center has proved to be a valuable resource both for the

group the author is a part of (The Phased Array Antenna Research and Development

group) but also to the lab as a whole. With the increasing use of 3D printed substrates

22



for use both in antennas and filters, a method to rapidly characterize the constitu-

tive parameters of a printed structure has proven to be invaluable. In the following

results, the testing of traditional commercially available substrates, homogeneous 3D

printed materials, and non-homogeneous manufactured substrates will be discussed.

3.2.1 Rectangular Waveguide Functionality

The waveguide system that has been implemented utilizes a 72.136mm by 17mm

(2.84” by 0.67”) waveguide. The width (or the (a) dimension in Fig 3.1) of these

waveguides is the same as the standard WR284 (or WG10) sized waveguide, although

the height or (b) dimension is half the size of a normal WR284. This is useful in

suppressing the existence of higher order modes. This is the same waveguide used by

Yeary, et all, for the OU SPY-1 project, as detailed in [82].

Figure 3.1: Rectangular waveguide dimensions
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The effective frequency range for this system is 2.60−3.95 GHz and is determined

by the cutoff frequency of the dominant and secondary modes of the waveguide. These

modes, which represent the field orientations within the waveguide, are visualized well

in Fig 3.2.

Figure 3.2: Rectangular waveguide modes for a/b = 2 [7]

The cutoff frequencies for each transverse electric (TE) or transverse magnetic

(TM) mode are calculated with an equation given in [7], as shown below in equation

3.1, with m and n being eigenvalues that represent different modes that can be excited:
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(fc)mn =
1

2π
√
µε

√
(
mπ

a
)2 + (

nπ

b
)2 (3.1)

Because operating near the cutoff frequency will lead to reduced performance,

when determining the actual working frequency range, a common rule of thumb is

that the lower limit of operation is 1.25×fc and the upper limit is 1.90×fc [83] where

fc is the cutoff frequency of the TE10 mode and is calculated as:

(fc) =
c

2× a
(3.2)

where c = the speed of light = 2.99× 108 m/s and a is equal to the width of the

waveguide as shown in table 3.1. The modes that can be excited were then calculated

and the first several are displayed in table 3.1.

Table 3.1: Cutoff frequency for rectangular waveguide (76.136 mm x 17 mm)

m n Fc

1 0 2.08 GHz

2 0 4.16 GHz

3 0 6.24 GHz

4 0 8.32 GHz

0 1 8.82 GHz

1 1 9.07 GHz

2 1 9.75 GHz

3 1 10.8 GHz

These calculations were also verified with simulations performed in HFSS, by

performing an eigenmode simulation of the waveguide structure we had:
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Figure 3.3: HFSS simulations of waveguide structure showing different excited modes

We can see here that the first mode excited is TE10, thus it is the mode that is

used for measurements. The operable frequency range is defined between the first

and second excited modes. While the discussion of the excitation of different modes

is important for understanding the hardware limitations of this system, it will become

much more useful when considering the implementation of a square waveguide, as the

higher order modes will be much closer to the frequency range we are operating over.

3.2.2 System Description

For the system that has been implemented in this thesis, the aforementioned

waveguide is mounted on a metallic rail for easy manipulation. The base system is

composed of two sets of two identical parts: an 11 cm long feed and a 17.5 cm section

of waveguide. Each feed section is a probe-feed for the waveguide that connects

to a coaxial cable which allows for excitation with a VNA. These straight waveguide
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sections are necessary to attenuate any evanescent higher-order modes that may result

from the waveguide to coaxial connection [40]. This hardware is displayed in Fig. 3.4:

Figure 3.4: Physically realized waveguide system showing feed, line, and port

As shown, each section is attached to one another with the use of four bolts

and nuts. Each feed is also attached to a metallic carriage, which allows for linear

manipulation. Before this rail was implemented, the waveguides rested on the work

bench and this in turn created variability in measurements, as the waveguide was free

to rock back and forth. Additionally a mount was constructed that fits on the side

of the rails, which allows for storage of extra hardware for added ease of use of the

system, as shown in Fig. 3.5. Fig. 3.5 also shows the thin segments of waveguide
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(which will be referred to as slides going forward) that are used as line delays for the

calibration procedure, as well as to hold samples for measurement.

Figure 3.5: Waveguide system closed with hardware mount and sample holders, ma-
terial under test mounted between both ports

As shown above, the two identical segments are attached to one another with

the same set of four bolts and nuts. These are used for all measurements to ensure

consistency, although it is important to ensure that they are not tightened excessively,

as this can result in bending or damage to the waveguides.

28



3.2.3 VNA Description

Testing with this system was done with either a Copper Mountain Planar 804/1 or

814/1 VNA. They exhibit very similar performance. Both VNAs have a frequency

range of 0.1 MHz to 8.0 GHz and have two ports. This is well within the frequency

band of interest for our system. Another very useful aspect of the Copper Mountain

VNAs is that they come with a built in LabView library. The software implementation

will be discussed in detail in section 3.2.6, but it is worth mentioning that these

libraries make integration significantly easier. The entire setup, including the VNA

and attached coaxial cables, is shown in Fig. 3.6:

Figure 3.6: Full waveguide system with VNA
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3.2.4 Calibration

A two port Thru-Reflect-Line (TRL) calibration is implemented in this system. When

discussing the calibration of this system and VNAs in general, the work of Rytting in

[84] is a wonderful reference on the internal methods a VNA is applying, while Pozar

also gives a great general overview in [1]. In general, the calibration is performed

to determine and eliminate the effects of connectors, cables, and everything that is

leading up to the reference plane where the MUT (referred to as the DUT in Pozar)

will be placed. By applying loads of known values to each port, the error can be

quantified, which is often referred to as the ”error box” of each port [1]. The author

will not discuss all of the calculations required for this procedure, as they have been

covered extensively, but generally, to perform a two-port calibration one must solve for

five parameters: S11, S22, S12, ΓL, and eγl and these parameters are related together

by five equations listed below:

T11 = S11 +
S22S

2
12

1− S2
22

(3.3)

T12 =
S2
12

1− S2
22

(3.4)

R11 = S11 +
S2
12ΓL

1− S22ΓL
(3.5)

L11 = S11 +
S22S

2
12e
−2γl

1− S2
22e
−2γl (3.6)
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L12 =
S2
12e
−2γl

1− S2
22e
−2γl (3.7)

Where T refers to measurements taken with the Thru connection (pictured in Fig.

3.7 (a) ), R refers to measurements taken with the Reflect standard (pictured in Fig.

3.7 (b) ), and L refers to measurements taken with the Line standard (pictured in Fig.

3.7 (c) ). These five equations relate these error parameters to measured transmitted

and reflected components, when each of the three loads (Thru, Reflect, and Line)

are applied. The algebra to solve these five equations is quite involved, so if one is

interested, solutions are available in [1] Section 4.5.

Figure 3.7 (a): Thru Figure 3.7 (b): Reflect Figure 3.7 (c) : Line

Figure 3.7: Waveguide calibration standards

As shown in Fig. 3.7, there are three unique calibration standards and all are

required to apply a TRL calibration. The Thru standard is quite simple, one must

only connect the two waveguide sections at the reference planes (where the MUT will

be placed) and take a measurement. The Reflect standard can be any load where at

the reference plane the VNA sees an approximately open or short. This results in all

incident energy being reflected back, hence the name, with the only difference in an

open or short being a 180◦ phase difference. The reflect standard used for this project

is a precisely milled piece of aluminum designed to fit perfectly over the opening of
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the waveguide with holes that match the flanges. The final standard required is the

Line, which serves to produce a phase delay. In the above equations, the length of

this line is represented by the symbol l. The length of line must be known and should

not be a λ/2 multiple of the frequency of interest, as this can produce uncertainty

in the phase measurements. By measuring the length of the line combined with the

known guided-wave velocity, the time delay from the line can be input into the VNA,

allowing for completion of the calibration.

3.2.5 Material Parameter Extraction Algorithm

To extract the constitutive properties of the MUT, the Nicolson-Ross-Weir (NRW)

method is employed. This is a closed form method initially proposed in 1970 by [39]

and modified in 1974 by [40] to become the method that is now commonly used today.

An in-depth study of the method is presented by Rothwell in [85], wherein multiple

cases of its application are studied. To employ this method, one must have calibrated

their VNA to the plane of reference directly adjacent to the MUT, it is possible to

compensate for a material sample that is not the same size as the sample holder

as seen in [26], but this is more relevant to and thus will be discussed in section

3.3. Once the VNA is fully calibrated, the sample must be placed in a section of

waveguide ensuring that there exist no gaps between the sample and the walls of the

waveguide, as this will introduce significant error [69]. Once the sample is situated

in the waveguide, a measurement can be taken. This will provide two data points

of each frequency: the transmitted and reflected components of the wave through

the material which are represented with S11 and S21. These two measurements are
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then used through the following method (primarily sourced from [85] but also with

reference from [39], [40], and [86]) to extract the material parameters:

First. the propagation factor P for a wave propagating through the material under

test is defined as:

P = e−jkzd (3.8)

Where kz is the propagation vector in the direction of propagation through the

waveguide, defined as the ẑ direction, written as:

k2z = k2 − κ2 (3.9)

where k is the wavenumber of the material, defined as:

k = ω
√
µε (3.10)

Depending on the application, the value of κ will vary. For a TE10 rectangular

waveguide, such as presented in this section κ = π/a. For a guided-wave system

that utilizes a TEM wave, κ is assumed to be 0, and for a free-space system then

κ = ω
√
µ0ε0(θ0). For the rest of this section, we will focus exclusively on TE10 mode

propagation.

Next, we can define the reflection coefficient for the wave impinging on the MUT

as Γ where:

33



Γ =
Z − Z0

Z + Z0

(3.11)

Where Z and Z0 are defined as:

Z =
ωµ

kz
(3.12)

Z0 =
ωµ0

kz0
(3.13)

With kz0 defined as:

k2z0 = k20 − κ2 (3.14)

where k0 = ω
√
µ0ε0. We can then relate the two parameters Γ and P to the

measured S-Parameters as:

S11 =
(1− P 2)Γ

1− P 2Γ2
(3.15)

S21 =
(1− Γ2)P

1− P 2Γ2
(3.16)

Equations 3.15 and 3.16 and then be rewritten using two placeholder variables as:

S21 + S11 =
P + Γ

1 + ΓP
= V1 (3.17)

and
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S21 − S11 =
P − Γ

1− ΓP
= V2 (3.18)

Next, in every derivation seen thus far, the variable χ is calculated as:

χ =
S2
11 − S2

21 + 1

2S11

(3.19)

Which then allows us to rearrange equations 3.17 and 3.18 to eliminate the variable

P so that:

Γ2 − 2Γχ+ 1 = 0 (3.20)

This forms a quadratic equation to solve for Γ, with the caveat that by applying

the quadratic formula we will create the potential for two solutions:

Γ = χ±
√
χ2 − 1 (3.21)

However, the ambiguity of this answer does not present a major problem, as we

can assume the material under test is passive (i.e. the material does not offer gain),

in which case the condition |Γ| ≤ 1 can be applied, as only one solution will satisfy

it. Once equation 3.21 has been solved, one can then solve for P :

P =
V1 − Γ

1− V1Γ
(3.22)

Having solved for both P and Γ, we can then begin to solve for the material

parameters. This solution can be written multiple ways, depending on the source.
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The author will start by showing the classical representation, followed by an alternate

form that was found to be easier to follow. First, the classical form from [40]:

1

Λ
=

(
εrµr
λ20
− 1

λ2c

)
= −

[
1

2πl
ln

1

P

]2
(3.23)

where λ0 is the free-space wavelength and λc is the cutoff wavelength of the

waveguide. Λ can further be defined with:

Re

(
1

Λ

)
=

1

λg
(3.24)

Unfortunately for those trying to implement this methodology, equation 3.23

presents a problem in the form of an ambiguity. Because P is a complex value,

and the natural logarithm of a complex number has infinite roots repeating every

integer multiple of 2π, there will be an infinite number of solutions to equation 3.23.

This is more clearly illustrated in [85] with the following equation; note that the value

of k̄z = kz/k0

k̄z =
n− φ

2π
d
λ0

+ j
lnP
2π
d
λ0

(3.25)

Where the variable n represents the infinite integer solutions available. This is also

commonly referred to as the branching problem, and there exists extensive literature

on how to work around this issue such as in [87], [8], and [42]. This is mainly a

concern when the material is electrically large (i.e thickness≥ λ/2) or when measuring

a substrate that does not behave in a manner consistent with naturally occurring
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materials. Because the samples that were measured with this system do not approach

that thickness, and the bandwidth the system is capable of measuring over is not

exceptionally large, this is not an issue to discuss in this section.

To finish this derivation, and illustrate how the material parameters will be ex-

tracted, first we must define a placeholder variable F as:

F =
1− Γ

1 + Γ
(3.26)

and calculate:

k̄2 = k̄2z + κ̄2 (3.27)

letting κ̄ = κ/k0. Using F and k̄2, we can then solve for the relative permittivity

and permeability of the material as follows:

εr = k̄2
k̄z0F

k̄z
(3.28)

µr =
k̄z
k̄z0F

(3.29)

3.2.6 GUI Development

A primary concern for this project was the creation of a user interface to control the

calibration, measurement, and post-processing for this system. Originally, each of

these processes were conducted separately and required more time than was ideal,
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with the user having to calibrate the system with software specifically for the VNA

and then import the data manually into MATLAB to run the NRW script. This was

a time consuming process that did not allow for quick visualization of measurements.

To rectify these issues, a GUI was developed that allowed for all the requisite tasks

required to acquire measurements into a single centralized place. The final GUI is

pictured below in Fig. 3.8:

Figure 3.8: User interface for waveguide system

The measurements visible are of a 3D printed substrate modified with an array

of cylindrical air gaps to form an artificial dielectric. More detail on the measured

results will be discussed in the following section. However, first each of the features of

the code will be illustrated. For reference, an overview of the code will be discussed

first.
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3.2.6.1 Overview

The overall control software architecture is shown below in Fig. 3.9.

Figure 3.9: Control software overview

Here we can see the basic layout of the code, which is centered around an event

structure that tracks user inputs and produces the corresponding desired result. The

program initially resets all stored variables and connects to and configures the VNA

to the basic/expected state with the correct number of traces that each contain the

correct parameter. This is important, as the VNA exports data based on the order

of traces and could corrupt the collected data if the user was allowed to configure it

erroneously. After this, the code enters a While Loop where it remains indefinitely,

waiting for a user input. Each of these possible inputs, and their implementation,

will be discussed below.
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3.2.6.2 Calibration

The first step in taking successful and accurate measurements is the application of a

calibration state to the VNA. The user can accomplish this in one of two ways: by

loading a saved calibration state or by calibrating the system manually. We will cover

the manual calibration process first, as this is the most common activity undertaken.

To begin calibrating the system, the user selects the ”Begin Calibration” button

as shown in 3.8. As you can see in Fig. 3.10, there are no user inputs for this section.

Figure 3.10: User begins calibration procedure

Instead, the code is simply instructing the VNA to load the requisite calibration

kit. This is exceedingly important, as the computer used to control the waveguide

system is also used to control other measurement devices. Thus, the VNA may be

programmed to use a different calibration kit. These kits tell the VNA about the

calibration standards that will be used, as well as the frequency range for calibration.
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If the user does not specify the correct calibration kit and tries to run a calibration,

the VNA will simply not comply and will return an error. This was a significant source

of frustration when this project first began, as the author struggled to discover why

his calibration code occasionally would not work after another user had worked with

the VNA. Thankfully, the calibration kits are stored locally on the computer and

have a constant index, so a known kit will be loaded into the system every time

measurements are to be taken. This kit covers the full working frequency range of

the system, therefore it will work for any logical frequency setting.

At this point, the user can configure the frequency range they would like the VNA

to operate over, the number of points in the frequency sweep, and the IF bandwidth.

This procedure makes use of a VI native to the Copper Mountain library and is shown

below in Fig. 3.11:

Figure 3.11: Update VNA settings
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After preparing the VNA for calibration, the TRL calibration method as described

in section 3.2.4 must be carried out. To accomplish this, the user is presented with

four buttons that each trigger a specific calibration standard to be measured.

For a Thru measurement, the code to accomplish this is shown below in Fig. 3.12:

Figure 3.12: Thru calibration

The user is first prompted to input the standard, in this case connecting each

waveguide section directly to one another. After the user confirms the standard is

ready, the VNA is prompted to take the measurement. For each LabView Virtual

Instrument (VI), the term used for a code block, that communicates with the VNA,

SCPI commands are used. The potential commands that can be used are extremely

extensive, as shown in their programming manual [88]. With these SCPI commands,

basically every functionality present in their control software can be accomplished

programmatically. Following this, the user will take two measurements with the

Short/Reflect standard, one for each port, as shown below in Fig. 3.13:
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Figure 3.13: Reflect calibration

This will be followed, finally, by taking a single Line delay measurement. This is

shown below in Fig. 3.14:

Figure 3.14: Line calibration

The user will then press the apply calibration button to perform the required

calibration. If the user is happy with the calibration state, they can save it, as shown

in Fig. 3.15. They will then be prompted by the software to choose a location to save

the file with the name of their choosing.
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Figure 3.15: Save calibration state

The user also has the option to load a previously saved calibration state. This is

particularly useful when the user wants to take multiple measurements over a period

of time during which the system has not been tampered with in any way (i.e. the

cables have not been moved or the connectors have not had their tightness adjusted).

An example of the code that handles this procedure is shown in Fig. 3.16.

Figure 3.16: Load calibration state

Care should be taken to not rely on this procedure too heavily however, as there

exists the possibility that the system was modified without the user’s knowledge or

that unintended contact with the system has led to slight shifts in cable positioning

which can dramatically change the errors present on each port.
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3.2.6.3 Measurements

Once the system is satisfactorily calibrated, taking measurements is the next step.

To accomplish this, the user must verify that the settings for the post-processing

are correct. These two variables are the width of the waveguide and the thickness

of the material. As shown above in section 3.2.5, both of these variables are used

in extracting the material parameters. It is important that the user verify these

values are correct, as even slight deviations will produce dramatic changes in the

results. The waveguide width will most likely not change, but the code was written

with adaptability to other waveguide-based material measurement systems in mind

so the option exists for use with different size waveguides. There is no button press

required to update these values, as they are taken directly into the material extraction

algorithm when a measurement is triggered. The code for triggering a measurement

is shown below in Fig. 3.17.

Figure 3.17: Take Measurement

As shown in the above figure, the extraction algorithm is not performed in Lab-

View. Instead, the LabView control software runs a script node that calls a designated
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MATLAB function. This requires both programs to be on the computer operating the

system, as well as for a MATLAB bootstrapper to run constantly in the background.

The benefit to this setup however, is that the computations required for the post

processing are unnecessarily difficult to accomplish in LabView, and the data can be

taken directly from the output of the control software and input into a MATLAB

program that can run the post-processing again. This is particularly useful, since

MATLAB is used so heavily at the Radar Innovations Lab, so plotting and process-

ing data is user-friendly. Once the user chooses to take a measurement, they will then

have the opportunity to specify the file name and location to which they would like

to save the measured data.

3.2.6.4 Data Visualization

After the data is measured and the material parameters are extracted, it is instantly

displayed to the user in the form of three plots. They display the permittivity, perme-

ability, and the tangent loss calculated from the material measurements. Additional

functionality was added to aid the user in the form of interactive cursors. These allow

the user to scroll through the data or specify a particular frequency of interest to view

the measured value at that point. The data is also exported, ready to be taken into

MATLAB or the users program of choice to plot it as desired. Alternatively, the user

can also right click on the graph to open a prompt to save the current measurements

as a .eps file.
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3.2.6.5 User Help

The final features that will be covered are those that are geared towards helping

or instructing new users. There are three buttons in the lower left-hand corner of

the program labeled ”Calibration Setup,” ”Examples,” and ”Matlab Code.” Each of

these buttons will link the user directly to a PowerPoint presentation geared toward

assisting them understand the functionality of the system, the algorithms that are

used behind-the-scenes, as well as examples of different materials that have been

measured. This code block is shown below in Fig. 3.18.

Figure 3.18: User help button

3.2.7 Results

To validate the system, a wide variety of materials have been tested and error analyses

performed. These include ”traditional” dielectric substrates, 3D printed plastics, and

even concrete. In each of the figures below, the real and imaginary components of the

measured permittivity will be shown on a single plot. Because of the speed at which

these tests can be taken with different samples and sample orientations, each of the
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plots include several tests taken together of the same material. The calculated mean

is also shown in the figure, as well as the maximum difference in measured value seen

from over any one sample over the frequency band of interest.

Figure 3.19: Permittivity measurements of RO4350B, taken with waveguide charac-
terization system, expected εr = 3.66

The first measurement to be discussed is of Rogers RO4350B, a well known di-

electric with a design dielectric constant of εr = 3.66 and a dissipation factor of

tanδ = .0031. The measured results are shown in Fig. 3.19 and Fig. 3.20.
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Figure 3.20: Tangent loss of RO4350B expected tanδ = .0031

In addition to measurements of traditional dielectrics, several more unique mate-

rials were tested for a variety of applications. This includes 3D printed dielectrics,

milled artificial dielectric layers (although the results are not shown here), and con-

struction materials. Several samples were taken with different consistencies of con-

crete and water, and the results are shown below for the first sample:
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Figure 3.21: Concrete sample 1, permittivity measured with waveguide characteriza-
tion system, approximate expected value ε′r = 4.5− 5

The permittivity of concrete blocks is often considered to be around 4.5, though

this can vary from 2.5 - 7 F/m depending on the constitution of the concrete [89].

Figure 3.22: Concrete sample 1, tangent loss measured with waveguide characteriza-
tion system
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Figure 3.23: Concrete sample 2, permittivity measured with waveguide characteriza-
tion system

Figure 3.24: Concrete sample 2, tangent loss measured with waveguide characteriza-
tion system
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The third sample had a slightly different consistency, which forced the author to

use adhesive to keep the sample from moving while measurements were taken. This

did not appear to have a significant impact on the quality of the measurements taken:

Figure 3.25: Concrete sample 3, permittivity measured with waveguide characteriza-
tion system

Figure 3.26: Concrete sample 3, tangent loss measured with waveguide characteriza-
tion system
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The fourth concrete sample had a much different composition than the other three

presented in that it was also made with gravel and small stones. This resulted in an

overall lower dielectric constant.

Figure 3.27: Concrete sample 4, permittivity measured with waveguide characteriza-
tion system

Figure 3.28: Concrete sample 4, tangent loss measured with waveguide characteriza-
tion system
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In these measurements, a slight upward trend of the measured values versus fre-

quency is seen. While the causes have not been completely quantified, gaps between

the sample and the sample holder, which induce a strong capacitive effect that in-

creases with frequency, are believed to be the culprit.

The next measurements to be presented are of a 3D printed substrate that will

eventually be used for an integrated filter. The material used was PLA with 100%

printing. The complex permittivity of PLA is described in [90] and [91] to have a

real component around 2.70 - 2.75 and an imaginary component from 0.017 - 0.041.

These sample was measured with the waveguide material characterization setup, and

the results are shown below.

Figure 3.29: 3D printed PLA measured permittivity expected εr = 2.70
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Figure 3.30: 3D printed PLA measured tangent loss

3.2.7.1 Error Analysis

While taking measurements with this system, it was noted that errors appeared in

the calculated permeability and permittivity, particularly that the values were higher

than expected. To attempt to determine the cause of these errors, HFSS simulations

were performed of the WG system while introducing possible sources of error, two

likely sources were identified.

The setup for the waveguide simulation is shown below in Fig. 3.31. The structure

is made of perfect electrical conductor (PEC) and includes models of the flange of

the waveguide and the sample holder. The length of the WG is much larger than

the wavelength to ensure there are no effects from proximity to the excited ports.

The simulated results are then input into the same NRW algorithm used to extract

material parameters from measured results.
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Figure 3.31: Waveguide error analysis simulation setup

The first error source that was identified were gaps between the ports of the

waveguide and the sample holder itself. These could easily be introduced while taking

measurements on the physical system by not aligning the mounting screws correctly

or not tightening them sufficiently. An exaggerated depiction of this error setup is

shown below in Fig. 3.33. The simulation was then run over multiple gap sizes for

several sample thicknesses. These sample sizes correspond to the sample holders that

are presently available for use with this system, as shown below in Fig. 3.32.

Figure 3.32: Waveguide sample slide sizes
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Figure 3.33: Waveguide simulation with gaps between sample holder

After sweeping through a variety of gap distances, a set of three realistically

small gaps were selected. The results for the extracted material parameters for each

thickness will be presented below, followed by a table outlining the maximum error

seen for each parameter.

Figure 3.34: Illustration of gap location
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Figure 3.35: Extracted permittivity of 0.58 mm thick sample HFSS simulation

The upward shift in the extracted permittivity matches the effects seen in some

measurements. While perfect matching is not seen, the results below show better

matching as the sample thickness increases. A summary of the error values seen for

this sample is shown below in Table 3.2
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Figure 3.36: Extracted permeability of 0.58 mm thick sample HFSS simulation

Figure 3.37: Extracted loss tangent of 0.58 mm thick sample HFSS simulation

It is notable that the percentage error seen in the loss tangent of the material is

quite high. This is due, in part, to the extremely small expected value of tanδ =
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−4 × 10−3, so that any small variations in value will result in large percent error.

However, errors in permittivity, which is almost always the parameter of interest,

perform much better, especially in the ideal case with no gap where less than 1%

error is observed.

Table 3.2: Gap induced error for thickness = 0.58 mm

Thickness = 0.58 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.34 % 8.32 % 68.71 %

Gap = 0.05 mm 1.75 % 26.10 % 891.19 %

Gap = 0.1 mm 3.19 % 52.94 % 1000.80 %

Gap = 0.2 mm 8.07 % 107.62 % 833.29 %

The results for the next thickness, 0.82 mm, is shown below. As discussed before,

the error for all metrics is reduced as the thickness of the sample increases.

Figure 3.38: Extracted permittivity of 0.82 mm thick sample HFSS simulation
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Figure 3.39: Extracted permeability of 0.82 mm thick sample HFSS simulation

Figure 3.40: Extracted loss tangent of 0.82 mm thick sample HFSS simulation

It is worth noting that the presence of gaps adds considerable errors to the permit-

tivity measurements, which was also observed when taking physical measurements.
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Table 3.3: Gap induced error thickness = 0.82 mm

Thickness = 0.82 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.29 % 5.20 % 28.44 %

Gap = 0.05 mm 1.30 % 17.78 % 735.90 %

Gap = 0.1 mm 2.28 % 37.86 % 930.75 %

Gap = 0.2 mm 4.95 % 75.71 % 888.44 %

Additionally, as the gaps increase in size, the effects on permeability and loss tangent

grow rapidly beyond an acceptable error level.

Figure 3.41: Extracted permittivity of 2.94 mm thick sample HFSS simulation
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Figure 3.42: Extracted permeability of 2.94 mm thick sample HFSS simulation

Figure 3.43: Extracted loss tangent of 2.94 mm thick sample HFSS simulation
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Table 3.4: Gap induced error thickness = 2.94 mm

Thickness = 2.94 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.07 % 1.03 % 10.90 %

Gap = 0.05 mm 0.53 % 5.17 % 226.74 %

Gap = 0.1 mm 0.90 % 10.49 % 379.24 %

Gap = 0.2 mm 1.58 % 21.33 % 564.91 %

Figure 3.44: Extracted permittivity of 5.08 mm thick sample HFSS simulation
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Figure 3.45: Extracted permeability of 5.08 mm thick sample HFSS simulation

Figure 3.46: Extracted loss tangent of 5.08 mm thick sample HFSS simulation

It can be seen that increasing the thickness of the sample will reduce the effects

of small gaps on the measurements, although this is intuitive, as the gaps will make
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Table 3.5: Gap induced error thickness = 5.08 mm

Thickness = 5.08 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.04 % 0.57 % 7.75 %

Gap = 0.05 mm 0.38 % 2.93 % 91.18 %

Gap = 0.1 mm 0.70 % 5.84 % 160.19 %

Gap = 0.2 mm 1.31 % 11.72 % 239.05 %

up a smaller fraction of the volume of the sample as it increases in thickness. The

effect of gaps is still significant. This leads us to conclude that proper alignment and

tightening procedures must be followed thoroughly and ensuring that there are no

gaps present when taking measurements is vital for maintaining accuracy.

The other probable cause of measurement error identified was gaps between the

sample holder and the sample itself. This was seen commonly when performing tests,

as it is difficult to manufacture a sample to the tolerance where it fits into the sample

holder with minimal difficulty and has no gaps present. To evaluate the impact these

gaps have on performance, HFSS simulations were run sweeping over different values

of gaps. To illustrate these gaps, two figures below are presented. The first, Fig. 3.47

below, shows the normal configuration of the sample within the sample holder.
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Figure 3.47: Normal sample configuration HFSS simulation

Note that the sample is coincident with the sample holder walls. The new setup,

with an exaggerated gap for visualization, is shown in Fig. 3.48 below:

Figure 3.48: Sample holder with gap HFSS simulation
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Testing of this setup was done for two thicknesses at the extremes of the chosen

values, 0.58 mm and 5.08 mm, over a sweep of the same gap sizes explored before.

The 0.58 mm case will be displayed first, with the three extracted parameters shown

below in Figs. 3.49 - 3.51.

Figure 3.49: Extracted permittivity vs. sample holder gap 0.58 mm thick
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Figure 3.50: Extracted permeability vs. sample holder gap 0.58 mm thick

Figure 3.51: Extracted tangent loss vs. sample holder gap 0.58 mm thick

The results for this test show the most dramatic effects on the extracted permit-

tivity. While the other gap had an outsize effect on permeability and loss tangent,
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Table 3.6: Sample gap induced error thickness = 0.58 mm

Thickness = 0.58 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.53 % 8.93 % 47.71 %

Gap = 0.05 mm 0.99 % 7.29 % 32.33 %

Gap = 0.1 mm 1.26 % 9.04 % 91.42 %

Gap = 0.2 mm 1.85 % 8.88 % 42.61 %

there appears to be little correlation between gaps in the sample holder and an effect

on either. In particular, the error in permeability does not change with gap size and

matches the error inherently seen when applying the extraction algorithm. However,

the effect on permittivity follows a clear pattern, wherein as the gap grows the error

in the permittivity increases, and the overall measured permittivity goes down.

Figure 3.52: Extracted permittivity vs. sample holder gap 5.08 mm thick
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Figure 3.53: Extracted permeability vs. sample holder gap 5.08 mm thick

Figure 3.54: Extracted tangent loss vs. sample holder gap 5.08 mm thick
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Table 3.7: Sample gap induced error thickness = 5.08 mm

Thickness = 5.08 mm

Expected ε = 3.66 µ = 1 tanδ = −4× 10−3

Gap size Max % error ε Max % error µ Max % error tan δ

Gap = 0 mm 0.03 % 0.53 % 2.10 %

Gap = 0.05 mm 0.71 % 0.57 % 6.35 %

Gap = 0.1 mm 1.34 % 0.47 % 7.31 %

Gap = 0.2 mm 2.58 % 0.51 % 3.34 %

The same pattern observed in the thin sample is seen here. An increase in gap

size results in an increase in the error seen in permittivity measurements while loss

tangent and permeability are unaffected.

We can conclude that results generally have less variability when a large sample

is used. However, for all thicknesses the introduction of gaps between the waveguide

ports and the sample will result in significant errors in all three extracted parameters.

If a gap exists within the sample holder - sample interface, the most visible effect will

be on the extracted permittivity.

3.3 Square Waveguide for Anisotropic

Characterization

3.3.1 Introduction

While the use of rectangular waveguides for material characterization is well-documented

and has been done for several decades, the method still has its drawbacks. Namely,
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the measurement of anisotropic materials is difficult to perform. Because of the asym-

metrical nature of a rectangular waveguide sample holder, if a sample is prepared for

one orientation it cannot be rotated and measured at any other position. This is

of particular importance, as the preparation of multiple samples introduces another

source of error into the measurements [8]. This is illustrated below in Fig. 3.55:

Figure 3.55: Traditional measurement procedure for anisotropic materials [8]

Because the ARRC is interested in the development and testing of artificial di-

electrics and metamaterials, both of which can exhibit anisotropic behavior, simula-

tions and testing were performed to develop a method to test these materials from a

single sample.

Much of the work done was inspired by the work of Alexander Knisely in 2015,

where he describes the construction of a Waveguide Rectangular to Waveguide Square

(WRWS) system [34] [26]. This is illustrated below in Fig. 3.56. His work guided

many of the decisions made and the algorithms used for material extraction.
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Figure 3.56: Rectangular to square waveguide transition [8]

The main motivation when performing these tests was to utilize the fabrication

facilities at the ARRC to create a low-cost method for testing these anisotropic ma-

terials at S-band. To this end, the idea was to use the 3D printing capabilities of

the ARRC to print two WRWS transitions and a square sample holder and then

use electroplating tanks to coat them in copper. Ideally these transitions could then

be integrated with the previously described rectangular waveguide-based system and

control software to greatly expand the scope of what materials could be measured.

Unfortunately, the limitations of our fabrication abilities, algorithm issues, and time

did not allow us to completely achieve this.

3.3.2 System Description

When starting work to implement a WRWS transition, two main design goals were

established: the transition must be fully compatible with the current rectangular

waveguide system in use and it must be realizable with the fabrication systems at

the ARRC. To meet this first objective, the transitions were all designed to have the

exact flange configuration present in the current system. This model is shown below

in Fig. 3.57:
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Figure 3.57: Model of flange present in rectangular waveguide

This small section was first 3D printed to show that the flange was compatible

with the waveguide set up. This flange was then used as the basis for the connectors

used for the WRWS transition that was designed for.

3.3.3 Simulations

To design these transitions, ANSYS HFSS was used to perform simulations over the

frequency band of interest. The first simulations performed were a proof of concept,

did not include thickness and were not physically realizable. This is shown below in

Fig. 3.58:
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Figure 3.58: Model of WRWS transition geometry

The decision was made early on to use an exponential curve on the interior surface

as opposed to the straight transition employed by Knisley. This was due to the

reflections seen at the input of the transition, which were reduced over the band of

interest by implementing a curved surface. The higher reflections were due, in large

part, to the size constraints from the fabrication methods available. This will be

discussed more extensively in section 3.3.5.

After verifying the performance of a single WRWS transition, the full system was

also simulated with two transitions, a square sample of material, and the two feeding

waveguides. This full setup is shown below in Fig. 3.59.
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Figure 3.59: Model of WRWS system

After verifying the performance of this system, development of a physically re-

alizable WRWS began. The first version of this transition is shown below in Fig.

3.60:

Figure 3.60: Model of WRWS version 1

The interior and exponentially curved surface is better illustrated in Fig 3.61

below:
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Figure 3.61: Model of WRWS system interior

Unfortunately, fabrication difficulties proved to be extensive, with the flange on

both sides becoming deformed during the printing process. This prompted a thor-

ough redesign of the system with an emphasis on being realizable with the resources

available. A picture of the flange with damage to the square waveguide portion is

shown below in Fig. 3.62
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Figure 3.62: Damaged WRWS transition

This resulted in the creation of a second design, shown below in Fig. 3.63. A

new curved flange was added to the smaller port, and the larger port was thickened

significantly. Additionally, the larger port had two notches added to allow for the

flange to be precisely trimmed after printing. This was a result of the first batch

of this new design having significant damage to the flange caused by removal from

the 3D printer base which then did not allow for a complete connection between the

transition and the sample holder.
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Figure 3.63: Redesigned WRWS transition

This sample holder, which is perfectly square to allow for a single sample to be

inserted at all necessary orientations, is shown below in Fig. 3.64:

Figure 3.64: Square sample holder

These transitions were printed in the ARRC, but, as will be discussed in section

3.3.5, there were still significant challenges in the system implementation.
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The printed transitions are shown below in Figs. 3.65 and 3.66:

Figure 3.65: Redesigned WRWS transition printed

Figure 3.66: Redesigned WRWS transition printed

3.3.4 Material Parameter Extraction Method

To extract material parameters from the WRWS system, a modified Nicolson-Ross-

Weir technique was used. The main difficulty in implementing this algorithm is the
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branching issue discussed earlier. Because the phase of a measurement will wrap

around when measuring samples of thickness > λ/2, a branching algorithm must be

developed as shown by Knisley [8]. By using that thesis as a starting point, the

algorithm was developed in MATLAB to extract material parameters from simulated

values. This proved to be difficult, as the short length of the WRWS transition (a

result of the 3D printer used for fabrication) produced more reflections than was ideal.

Additionally, a calibration had to be applied to the simulated system, which required

measurements for a Thru-Reflect-Line calibration to be taken in HFSS and directly

applied to the simulated results.

3.3.5 Fabrication Constraints

The biggest difficulties that were faced when fabricating these designs were the 3D

printers used and the copper plating. The printer that was chosen for the design was

the FormLabs Form2 3D printer. This printer has a maximum print area of 5.7 Ö 5.7

Ö 6.9 in (14.5 Ö 14.5 Ö 17.5 cm) and a laser spot size of 140 microns [92]. This created

the maximum size of any printed structure we could fabricate. There were significant

difficulties in getting acceptable performance from this printer. The first being the

finishing quality on the structure. The portion of the WRWS transition that was in

contact with the printing plate often had serious bubbles or divots develop, which

forced us to plan cutting at least some portion of the transition off after printing.

This presented its own challenges, as even with a channel put into the design to guide

the saw, achieving a perfectly flat transition was challenging. Any shift in the flatness

of the transition would prove devastating, as air gaps existing between the waveguide
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sections will introduce an unacceptable amount of errors. This could have been rec-

tified with the use of support materials; however, the software from FormLabs that

runs the printer does not support user customized support structures. Because of

this, one must trust the software to decide where supports are necessary. For this

specific part, the software felt that supports must be placed internally. This is also

unacceptable, as it is impossible to completely remove the stubs of the support scaf-

folding except through extensive sanding, which then itself results in a non-uniform

surface. As a result, support structures could not be used and the inner surface of

the printed WRWS transition was uneven. The performance that resulted was less

than ideal and generated issues with the copper plating.

Once the structure is printed, it must be plated in copper for it to be able to

function as a waveguide. This proved to be problematic in our case. To achieve a

uniform copper distribution, the part must be entirely submerged in the plating liquid

and a uniform current distribution must be achieved. This requires the application

of copper tape around the part in such a way as to force current to distribute evenly

throughout the part. Unfortunately, this proved to be extremely difficult to achieve

even in smaller and simpler parts. The weight of the printed transition, plus its com-

plicated geometry, combined to be what proved to be an insurmountable challenge.

When attempting to plate the part, the copper distribution was uneven and often

the interior of the part was left completely unplated. Despite numerous attempts,

the part was never successfully plated to a usable degree. Eventually, a combination

of monetary and time constraints forced the author to move on from this work to

continue automating other systems. Ideally, and as will be discussed in the future
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work section, a waveguide transition could be purchased or milled directly from a

piece of aluminum or copper as done by [8].

3.4 Summary

In this chapter, the automation of a waveguide-based material characterization system

is described, as well as upgrades made to the hardware. The behavior of a waveguide

is explored with focus on the excitation of higher-order modes. The operation and

calibration procedures are detailed along with explanations of the software that is

used. The user interface is shown with descriptions of the different modes of opera-

tion available to the user. The functionality of the LabView code that runs the user

interface is explored, and sections of code are displayed to illustrate how different op-

erational functions are accomplished. The exploration of the use of a WRWS set-up

is described through details of the simulation and attempted fabrication of a WRWS

transition and sample holder. While there were significant challenges faced in its im-

plementation and it did not produce a working addition the the system, it did serve

as a valuable learning experience and provides an opportunity for future work. The

material extraction algorithm was developed to work with simulated results from the

WRWS setup, and this should ideally transition smoothly to the extraction of mea-

sured results in the future. A derivation of the Nicolson-Ross-Weir algorithm, which

is used to determine the electrical properties of materials, is also displayed. Material

parameter extraction examples follow, including examples of traditional dielectric ma-

terials, building materials, artificial dielectric layers, and 3D printed dielectrics. The
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potential sources of error in the waveguide setup are also explored. These are pre-

sented as two main components, gaps between the waveguide ports and gaps between

the samples and the sample holder. Both of these error sources are investigated with

the use of HFSS to determine the amount of error added to the measurements when

these two effects are occurring. It is shown that gaps between the waveguide ports

and the sample induce a significant percentage of error, even with relatively small

gap sizes, and these errors align well with the effects seen on physical measurements.
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Chapter 4

Free-Space Method for Material Characterization

4.1 Introduction

In this chapter the implementation of two more material characterization systems is

discussed. These two systems will be called the mmWave scanner, a multi-purpose W-

band setup that allows for antenna and material characterization, and the three-probe

or anisotropic scanner, which, as the name suggests, has a third probe that can move

independently of the other two to characterize materials at oblique angles of incidence

at C and X-band. Both of these systems utilize the free-space transmission-reflection

method for material characterization.
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4.2 mmWave RF Scanner

4.2.1 Introduction
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Figure 4.1: mmWave scanner full setup [9]

The mmWave scanner was designed by the PAARD to facilitate rapid testing for

phased arrays at W-band (75-110 GHz). It is a multi-purpose tool that has several

modes of operation depending on the required test. While these will be discussed

further in a later section an, overview of the possible modes of operation are as fol-

lows: far field, planar near field, and material characterization. This is accomplished
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by making the test setup reconfigurable and utilizing linear actuators. The control

software and mechanical design for this device was a product of the collaboration

between several very talented engineers and students, namely Chris Clark, Jonathan

Christian, Dr. Rodrigo Lebron, Kevin Constien, Dr. Zeeshan Qamar, and Dr. Jorge

Salazar. The author’s contribution to this work was in handling the interface of the

VNA and control software, as well as implementation of the material characterization

mode. The use of the mmWave scanner for material characterization has also been

described in [9] by members of the PAARD.

4.2.2 System Description

The mmWave system is composed of 5 linear actuators and 4 rotary tables which

are used to position the probe, antenna under test, and/or material sample and take

a variety of measurements. Two motors each run off of a Velmex motor controller,

which is used to interface with, and receive commands from, the desktop that the

control software is located on. The rotary tables allow for rotation of the AUT and

probes, for both co-polar and cross-polar measurements, as well as rotation of a

material under test for characterization off broadside. The entire system is mounted

on an optical table that allows for reconfiguration of the system, as needed. This

table also contains the VNA, power supplies, and motor controllers. The system

utilizes a Copper Mountain C4209 VNA which can natively go to 9 GHz, as well as

two FEV-10 frequency extenders which allows the VNA to operate from 75-110 GHz.

This is ideal, as the system was originally designed for testing automotive radars at

77GHz.
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4.2.3 Modes of Operation

The mmWave scanner has three main modes of operation: far-field antenna measure-

ments, near-field antenna measurements, and material characterization. The first to

be discussed is the far-field mode. While far-field testing of many radar systems at

lower frequencies requires a large range or anechoic chamber, or is generally unfeasi-

ble; testing high frequency systems and arrays is quite possible in a confined space.

A common rule of thumb for determining the far-field R is:

R >
2D2

λ
(4.1)

Where λ is the wavelength and D is the largest dimension of the antenna. Also

R >> D and R >> λ. Because arrays at these frequencies are often quite small in

size, and the wavelength is similarly small, it is possible to reach the far-field range

of these antennas within the dimensions of the optical table.

To take a far-field measurement with the mmWave scanner, one must mount the

AUT on the uppermost rotary table. The measurement probe is then positioned,

using a laser level, to be in the same plane as the antenna. The antenna is powered

on, and the rotary table is able to rotate the AUT for a complete 360◦ cut of a plane

of the antenna. The probe can be rotated 90◦ to measure both the E and H planes

of an antenna.

The final mode of operation is for material characterization. For this mode, two

identical probes must be mounted on each frequency extender. Great care must be

taken to ensure that both probes are equidistant from the material sample. While
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the algorithm that is used for parameter extraction, the code for which was written

by Dr. Zeeshan Qamar, uses all four S-parameters and averages between the ”like”

parameters, eg. S11 and S22 or S21 and S12, the algorithm is still extremely sensitive

to anything more than very slight differences in distance. This is due to the extremely

short wavelength of the frequency of operation, which results in phase wrapping issues

when misaligned by even a fraction of a millimeter. Utilizing a laser level, precision

calipers, and the machine’s ability to store its position accurately resolves this issue.

Once correct alignment has been achieved, taking measurements in this mode of

operation is very simple. One must only open up the material characterization user

interface and trigger a measurement. Measurements can be taken at oblique inci-

dences as well, although the lack of a third probe to capture the reflected component

of the impinging wave (as discussed in the next section on the three-probe scanner)

the measurements will have a degradation in accuracy. This system is suitable for

measuring isotropic materials at high frequencies

4.2.4 GUI Additions

A key goal of the work done on the mmWave scanner was for the creation of a

user interface that will expedite the measuring process and eliminate some of the

wasted time inherent in manual measurement and post-processing. This GUI operates

independently of the interface that controls the machine motion and antenna scans.

The user interface is pictured below in Fig. 4.2:
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Figure 4.2: mmWave LabView GUI

This interface is user-friendly and serves a valuable role in facilitating fast and ac-

curate measurements. The main features of the GUI are as follows: configuring VNA,

triggering VNA to take and store data, processing data rapidly through integration

with MATLAB, visualizing data, and control of rotary table motion.

Much of the architecture for this user interface is quite similar to the author’s

previous work on the guided-wave and free-space three probe scanners. However,

changes had to be made to fit the mmWave scanner more effectively.

Configuring the VNA is fairly straightforward. Another Copper Mountain VNA

is used for this system, which means that the included LabView library can still

be used. Therefore, the user can easily specify the frequency range of interest and

then quickly reconfigure the VNA. When the code initializes, the required traces for

the implemented material extraction algorithm are automatically applied. For the

mmWave scanner, this means that eight traces will be active: the real and imaginary

components of each of the four S-parameters.
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Triggering the VNA is similarly straightforward. Taking a measurement is as

simple as sending a SCPI command via LabView that instructs the VNA to take a

measurement as well as where the received data will be stored.

The data is then immediately processed with an instance of MATLAB that runs

through LabView. The four-parameter algorithm is applied, using the frequency

data from the measurements, as well as the user-specified material thickness, and the

extracted material parameters versus frequency are then saved, and simultaneously

sent back to LabView for display.

The same interactive graphs that are used for the guided wave system are used

here, and allow for the user to trace over the output data to observe values at specific

frequency points. The extracted permittivity, permeability, and tangent loss are

displayed to the user. This allows the user to rapidly check that the measurements

they have taken follow expected results, time is not wasted running post-processing

scripts manually, wherein the discovery of a poor measurement may result in time

lost.

The rotary table that the material sample is mounted in can also be controlled

through the user interface.

4.2.5 Results

Because of the situation that, at the time of writing, is ongoing with respect to the

Covid-19 outbreak, complete testing of this system was not possible. However, for

illustrative purposes, results from several materials taken previously by Dr. Zeeshan

Qamar with the mmWave scanner will be presented.
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Three materials were measured and the results will be presented below. These

materials are: Rogers 5880, Tachyon 100G laminate, and Taconic TLX laminate. A

summary of the results is shown below in Table 4.1, where σ represents the standard

deviation, followed by plots of the measured results.

Table 4.1: Measured results mmWave scanner

Material Expected ε Mean Measured ε σ Real σ Imag

RT5880 2.20 - 0.000198j 2.2548 - 0.0177j 0.012 0.0034

Taconic TLX 2.60 - 0.0049j 2.6076 - 0.0050j 0.0054 0.0035

Tachyon 100G 3.02 - 0.0063j 3.0578 - 0.0416j 0.0063 0.0045

Figure 4.3: Rogers 5880 measured permittivity expected εr = 2.20
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Figure 4.4: Rogers 5880 measured tangent loss expected tanδ = 0.0009

Figure 4.5: Tachyon 100G measured permittivity expected εr = 3.02
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Figure 4.6: Tachyon 100G measured tangent loss tanδ = 0.0021

Figure 4.7: Taconic TLX measured permittivity expected εr = 2.60
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Figure 4.8: Taconic TLX measured tangent loss tanδ = 0.0019

Good matching to the expected values is observed in all three tests. There is a

slight upward shift in all of the measured permittivity values, although this has been

observed occurring when the sample is slightly misaligned rotationally. Because of

the extremely small wavelength the scanner operates at, even infinitesimal changes

to the position of the probes or the rotation of the sample holder has dramatic effects

of the measured results.
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4.3 Three-Probe Method for Anisotropic Material

Characterization

4.3.1 Introduction

The three-probe anisotropic material characterization system is the last scanner that

will be presented. This scanner is the result of hard work from two other students,

Joel Love [10] and Alexander Stringer [2], without whom the author would not have

been able to complete this project. The mechanical design and early testing was done

by Mr. Stringer, and integration of the system with the control boards was done by

Mr. Love. The authors primary goal on this aspect of his work was integrating

the numerous small LabView scripts needed to run the system as a single unified

GUI. Additionally, a new and more accurate material characterization algorithm was

implemented to improve measurement quality.

4.3.2 System Description

The three-probe system, as the name implies, uses three WR-112 waveguides with

3D printed dielectric rod antennas to measure a material sample over a wide range of

incident angles. Two of the probes, as shown in Fig. 4.9 and labeled Tx and Rx1, are

locked in place.Tx is the transmitting antenna. The Rx1 antenna is used to measure

the transmitted component of the applied wave. The Rx2 antenna, however, is free

to rotate. This antenna is mounted to a rotary table to enable automatic accurate

movement. The Rx2 antenna can then follow the rotation of the material sample
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over incident angle, and it will receive the reflected component of the applied wave.

This permits the user to apply a two-parameter Nicolson-Ross-Weir method to the

measured data, and extract the material parameters more accurately.

Figure 4.9: Anisotropic scanner full system setup

The RF scanner utilizes six aluminum rails acting as linear actuators that can be

used to move the trolleys mounted on them. Each linear actuator has a stepper motor,

which is used to position the trolleys and allows the entire measurement process to

be automated. Three of the rails are mounted horizontally around a single axis

where the material under test is also mounted on a rotary table. Each of the three

horizontal rails has a trolley mounted on it upon which is mounted another linear

actuator. These three rails can position their trolleys vertically and upon each trolley
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a probe is secured. This allows each of the three probes to move both up/down and

nearer/farther from the sample independently.

All of the stepper motors that drive the linear actuators are controlled by two

TinyG CNC controller boards. They have an accuracy of 0.091mm [2]. These are

controlled by sending commands to the TinyG USB port that interfaces with the

controlling computer. Additionally, limit switches are mounted on all of the linear

actuators at known positions to allow the system to automatically home itself and

prevent damage to the system.

The VNA used for this system is a Copper Mountain Planar 804/1 with two ports.

Because the VNA has only two ports, while there are three probes required to take

the transmission and reflection measurements when not at broadside, an RF switch

was used to switch the second port between the probes receiving the transmitted

and reflected waves. To communicate with this switch an Arduino Uno was used to

control a solid state relay that delivered the 24 V required to operate the switching

action.

This setup allows a sample to be centered between all three probes. As the sample

rotates off broadside from the transmitter, the reflected waveform will no longer reflect

directly back. This is where the S11 receiver becomes useful, it rotates in tandem

with the sample to capture the reflected wave. Therefore, both the transmitted and

reflected portions of the waveform are sampled, even at oblique incidence.

Each probe is a dielectric rod antenna designed for 7.5 GHz (WR112). These

antennas were useful for this application due to their narrow beamwidth (10◦) and

small far-field range (2 inches), both of which contributed to a reduction in the size
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of the entire testing apparatus. The antennas must be at least their far-field distance

away from the sample to take an accurate measurement.

An important consideration in this system is the size of the sample under test. If

the area illuminated by the test beam approaches or crosses the edge of the sample,

then direct transmission and edge diffraction will occur, both of which will cause

inaccurate measurements. Because of this, the sample’s height and width should be

at least 1.5 times larger than the antenna beamwidth [58]. The sample thickness must

also be small with respect to the wavelength (l << λr/2).

4.3.3 Modes of Operation

The system has three primary modes of operation: broadside material characteriza-

tion, oblique incident angle material characterization, and S-parameter measurements

for when the extracted material parameters are unnecessary. For each mode an exact

procedure must be followed before measurements can be taken. First, the system

must be homed so that accidental moves out of the range of the linear actuators

(which can severely damage the system) can be avoided. The homing procedure is

fairly simple, as the TinyG control boards have a built-in functionality for the process.

Limit switches are installed on all linear actuators, and their positions are defined

programatically on the control boards. The homing procedure watches each of the

probes that will be used in the measurement, Tx1 and Rx1 for broadside or all three

for an oblique angle measurement, move until the trolley impacts the limit switch.

This occurs for all horizontal and vertical actuators. After this is accomplished, the

100



system acknowledges that the probes are in a pre-defined position and ready to be

moved.

Following this, the system must be calibrated. An automated calibration pro-

cedure was developed for the system. The calibration procedure changes slightly

depending on if the scanner is taking broadside or angular sweep measurements,

with Transmission-Reflection-Line (TRL) being used for broadside and Transmission-

Reflection for the angular sweep.

For a broadside TRL calibration, three steps are required, although most of the

positioning is handled by the control software. The first step is to take a Transmission

or Thru measurement. When the calibration procedure is started, the probes will

move automatically to the user-specified position for measurements. This is followed

by taking a measurement with no reflect standard. Next, a line measurement is taken.

To create the effect of a line delay in free-space, each of the probes retracts by one

eighth of a wavelength, creating a separation of λ/4. This delay is used by the VNA

to calibrate for phase errors. Finally, a reflection measurement is taken. This is

accomplished by returning the probes to their original location, after which the user

places a slab of copper-clad dielectric (which must be the same thickness as the MUT)

into the sample holder. This will reflect the impinging wave, and will provide all of

the requisite information to apply a TRL calibration.

To perform a calibration for an oblique incidence angle measurement, the pro-

cedure is somewhat more complicated, however it is no more difficult for the user.

The basic idea of the calibration is to take a reflection measurement at every angle

that will then be measured for the MUT. First, the sample holder must be empty
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and a Thru measurement will be taken for the Tx1 and Rx1 probes. After this, the

system will prompt the user to input a reflect standard. When the reflect standard

is mounted in the sample holder, the system will automatically move to the first an-

gle that will be measured. The sample will rotate, and the mobile probe (Rx2) will

follow that rotation to be directed at the angle where the majority of the energy will

be reflected. The system cycles through all of the positions to be measured, taking a

reflect measurement and then saving a VNA state. Each of these states are assigned

a number that is used by the system during the measurement process later.

Once this calibration is applied, the system allows the user to take a measurement.

For a broadside measurement, this is extremely simple and fast. The user simply

prompts the system for a measurement, and, in a similar process to that described

in the discussion of the mmWave scanner, the S-parameters are saved and a modified

NRW script is applied to them.

For the oblique incidence angle measurements, the process once again takes more

time but is also quite user-friendly. The system prompts the user to input the material

sample, and then moves to the starting angle. Following this, a process will ensue

where the system recalls a saved calibration state from the VNA, then saves the

calibrated S-parameters to a CSV file, passes those S-Parameters to a MATLAB

script that applies the material characterization algorithm, then stores the material

parameters. This is repeated for every angle of interest. Once this is completed, the

angular data for a single frequency (7.5 GHz as that is the operating frequency for

the rod antennas) is displayed for the user.
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Finally, a simple measurement of the S-Parameters is also possible. For this, the

user employs the manual positioning feature to position the probes as needed, and

saves the S-Parameters directly from the VNA.

4.3.4 GUI Development

The creation of an easily accessible user interface was a key goal in the author’s work

on this scanner. This interface has several key features which will be discussed: VNA

configuration, manual mechanical control, measurement configuration, system status

visualization, calibration and homing, data visualization, and data saving utilities.

This user interface is pictured below in Fig. 4.10

Figure 4.10: Anisotropic scanner LabView GUI

While much of this functionality had existed in the past, it was part of a massive

number of Vi’s and sub Vi’s that had to be operated independently. Additionally,

when running scans the only option for the user was to follow a strict path that

included homing, calibration, and measurement. This forced the user to arduously
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recalibrate for every measurement that needed to be taken, even if they were sequen-

tial and utilized the same measurement setup. This had to be rectified during the

development of this GUI.

When the code is initialized, it first configures the VNA and the socket connections

required for operation. These sockets can be customized within the user interface as

seen in the upper left hand corner of the GUI in Fig. 4.10. The initialization code is

shown below in Fig. 4.11:

Figure 4.11: Anisotropic scanner initialization code

As with all of the other user interfaces, a way to control and reconfigure the VNA

is included in this GUI. This allows the user to specify the frequency range of interest

as well as the number of points to measure.

Before the hardware is allowed to operate, a homing procedure must be performed.

This involves starting the homing procedure for whichever measurement mode is

required: broadside or anisotropic. Once started, the system will move each linear
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actuator towards its start point where a limit switch is mounted. Once the limit

switch is activated the system will be ”homed,” and will know its reference location.

After reaching the reference location, the system will move back to the specified

measurement locations. Homing is required before calibration can be performed, to

reduce the risk of a collision. This homing procedure is shown below in Fig. 4.12:

Figure 4.12: Anisotropic scanner homing procedure

The interface also allows for manual positioning of all of the linear actuators as

shown in Fig. 4.13. This permits for manual testing to be done, as well as a quality

of life improvement that removes the need to use a socket connection to communicate

directly with the control board.

Figure 4.13: Anisotropic scanner reposition motors
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Once a measurement is ready to be taken, the user must input the thickness of

the measured material for the NRW script to use. As previously discussed, this is a

vital parameter for accurate results to be obtained.

The interface also informs the user of the current status of the system. Lights will

indicate when the system is connected to the VNA, when the system is homed, and

when the system is calibrated and ready for a measurement to be taken.

The GUI allows for automatic calibration procedures to be performed and includes

prompts to the user that guide them through the process. The first calibration proce-

dure, for broadside measurements, is very simple and requires the user to merely input

and remove a reflect standard from the sample holder. Other than this, the system

handles all movements and measurements required to implement a TRL calibration.

For an angular calibration, the code is more interesting. The system first takes a

through measurement between the two broadside ports, then moves to the starting

position and prompts the user to input the reflect standard. It then moves to each

position to take and store a calibration file. This is shown below in Fig. 4.14.

Figure 4.14: Anisotropic scanner angular scan calibration
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Once the system is prepared, a measurement can be taken. The general procedure

is similar to the angular calibration, in that the system is moving to the determined

measurement locations, loading cal files, taking measurements, and saving them. This

procedure is also shown below in Fig. 4.15:

Figure 4.15: Anisotropic scanner angular measurements

Once a measurement is taken, plots of the values measured are shown to the user.

They are interactive,adjustable, and have dynamic markers to show values at a point

of interest. The user can the easily save the data as a CSV file with a user-defined

name and location.

4.3.5 Results

The results shown below are measurements of two dielectric slabs over a range of

incident angles from 30 - 50 degrees. A summary of the results are shown in Table

4.2, where σ represents the standard deviation of the measurements, and plots of the

measurements are shown below that. The mean is calculated over all incident angles
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at a frequency of 7.5 GHz. All plots shown below are also at 7.5 GHz. We witnessed

favorable matching for both permittivities, although the results veered away from

the expected value at larger incident angles. This is to be expected, because as the

sample rotates, the beam of the transmitting antenna approaches the edge of the

sample, causing diffraction effects that can negatively impact the results.

Table 4.2: Measured results anisotropic scanner

Material Expected ε Mean Measured ε σ Real σ Imag

RT5880 2.20 - 0.000198j 2.2749 - 0.1107j 0.1139 0.0447

RO4350 3.66 - 0.0113j 3.6572 - 0.5014j 0.1655 0.4195

Figure 4.16: Measured RO4350 S-parameters
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Figure 4.17: Measured RO4350 permittivity

The edge effects generate significant phase error, especially as the sample rotates

to more severe angles of incidence. These phase errors are visible in the calcula-

tions of the permittivity in Fig. 4.17 above and are even more pronounced in the

measurements of the imaginary component of the permeability below in Fig. 4.18.

Figure 4.18: Measured RO4350 permeability
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The reflected S11 component is also normally much smaller in magnitude than the

S21 measurement, which leaves it even more susceptible to interference from diffracted

fields. This is also reflected in Table 4.2 in the standard deviation σ of the imaginary

component, where great variance is seen over a measurement.

Figure 4.19: Measured RO4350 tangent loss

Figure 4.20: Measured RO5880 S-parameters
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Figure 4.21: Measured RO5880 permittivity

The measured results of Rogers RT5880 match more closely with the expected

values, although there is still variance seen in the imaginary components.

Figure 4.22: Measured RO5880 permeability
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Figure 4.23: Measured RO5880 tangent loss

These results show improvement over the outcome previously measured with this

machine. The main driver of this improvement is the implementation of a two-

parameter algorithm, the reduction in phase errors, and experimentation with antenna

positioning.

The two-parameter NRW algorithm that was implemented using the method found

in [58] improves the results at more extreme angles of incidence, but is also very sus-

ceptible to phase errors. These errors were so unfavorable, that for the previous work

on this system a single parameter (just using S21) produced better results. How-

ever, through lots of experimentation and efforts to reduce the phase errors present,

acceptable results were produced with the new algorithm.

To reduce these errors, several steps were taken, primarily removing the mounting

frame used for samples and experimenting with time-gating settings. The removal of

the mounting frame presented its own difficulties, however, as the sample was now

increasingly prone to bending horizontally. Any sort of flex in the sample introduces
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errors of its own, as this introduces variation into the distance of the probes to the

sample and thus also produces phase error. This was mitigated by using thicker sam-

ples that were more structurally sound as well as setting the sample holder rotation

rate to a minimum.

As discussed in [10], the antennas that are currently mounted on the system have

disadvantages. This is mainly caused by two factors, the spherical nature of the wave

produced by the antenna and the width of the beam. To get accurate results, the

wave impinging on the sample must be close to planar and illuminating only the

sample. However, for the dielectric rod antennas that are used presently, these two

criteria present a dilemma wherein moving the antenna far enough away to have a

planar phase front causes the beamwidth to become too large.

The best results were obtained by moving the antennas to their highest point

possible at the range suggested by [10]. This, in combination with the removal of the

metal frame, which appears to be a source of much of the diffracted fields at larger

incident angles, and a narrow time gating band produce the best results. However, if

a Gaussian focused beam antenna could be used for the system, the author believes

even more accurate results are possible.

4.4 Summary

This chapter summarizes the work done by the author on the automation of two free-

space material characterization systems. The first system discussed is the mmWave
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RF scanner. The system operates at 75-110 GHz and provides multi-mode function-

ality that allows for antenna measurements in addition to material characterization.

The system hardware and different modes of operation are presented first. This is

followed by a description of the user interface. Finally, measured results from three

dielectrics are presented. The other system that is detailed is the three-probe material

characterization scanner. This system, initially designed by Alex Stringer and Joel

Love, was upgraded to include a new user interface that should streamline operation.

The hardware and operating modes are presented, followed by a discussion of the

creation of a GUI to control the system. The operation of the control software is

also detailed along with descriptions of the different features present. The calibration

procedure for both the broadside and angular measurement tests is detailed and the

software that drives this calibration is presented. This includes a discussion of the

interaction between the software, the control boards, and the VNA. The section con-

cludes with the presentation of material characterization tests for validation of system

efficacy. No frequency selective surfaces or anisotropic materials could be fabricated

by the PAARD to test with this scanner before operation of the lab ceased. However,

two commonly known dielectrics were used and showed improved consistency over

incident angle.
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Chapter 5

Epilogue

Three material characterization systems were automated and tested, with improve-

ments made to their parameter extraction algorithms and overall usability. For each

system, control software was created to allow for rapid calibration, testing, and data

visualization with a focus on accessibility. This control software is explored in de-

tail for all systems and shows the general program flow as well as describing the

different capabilities available to the user. The hardware design for each system is

also outlined along with descriptions of the different modes of operation the machine

can support. Each system was successfully automated, and this functionality was

displayed with measurements of a variety of dielectric materials. Possible sources of

error in measurements taken were determined, and their effects quantified through

the use of the electromagnetic simulation software HFSS. This error analysis should

prove useful for future measurements taken with these systems, as should the work

done on potentially fabricating additional waveguide segments. Through the imple-

mentation of these user interfaces this work should present an ideal stepping stone

for future studies in the characterization of RF materials.
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5.1 Conclusion

The goal of this thesis was to automate three material characterization systems

present in the Advanced Radar Research Center to allow for easier use and to reduce

measurement time. For each system, a centralized user interface was developed that

unified the procedures of calibration, measurement taking, and data post-processing

into a single accessible form.

Each of the three systems present unique capabilities and operational frequency

ranges that allow for a wide variety of dielectrics to be tested. The three-probe

scanner offers a flexible setup that can measure smoothly over a wide range of incident

angles which is invaluable for characterizing anisotropic materials. The mmWave

scanner, which was already programmed to perform as an antenna measurement

system, was augmented to provide broadside and angular material measurements at

W-band frequencies. The guided-wave system presents rapid and accurate testing

of isotropic materials, with work done to expand this functionality to anisotropic

materials in the future.

For each system the creation of a user-friendly interface was the primary objective,

and to accomplish this LabView was chosen for its ease of communication with the

VNAs and control boards utilized in the scanners. These user interfaces allow for the

user to open only a single window and do not require a high level of experience with

the machine to operate. Each GUI integrates the common tasks performed during a

measurement into a single place, which drastically cuts down on the time involved.
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This includes prompting the user and guiding them through the calibration proce-

dure for each system, taking measurements automatically, processing that data with

MATLAB, and visualizing it for the user in a way that allows for easy exportation.

A variety of methods to improve the systems were explored. A rectangular to

square waveguide transition was simulated and fabricated, in an attempt to add

anisotropic material measurement capabilities to the guided-wave system. While this

was not ultimately successful, the foundation for fabrication of these structures in the

future is present. The material extraction algorithms were also improved upon, with

a new two-parameter algorithm being implemented for the three-probe scanner and

normalization of measured permeability explored to counteract measurement errors.

Measurements of a varied set of materials were taken for each system to verify

their functionality as well as that of the user interfaces. This list includes tradi-

tional dielectrics such as Rogers 4350B and RT5880, 3D printed dielectrics, and non-

traditional materials like concrete. Although not every measurement that was taken

with these systems is presented in this document, it is encouraging that so many

different applications for these systems have been found in the time they have been

operational. Where the measured values did not align with expectations, simulations

of possible error sources were performed. These simulated results helped to determine

that, for example, using the guided wave system, gaps between the sample, sample

holder, and waveguide ports were likely responsible for the shift seen in some mea-

sured results. The measurements taken verify the functionality of the user interfaces

developed for this system as tools to expedite measurements.
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5.2 Future Work

In the next stage of this work, the ideal steps would be to develop anisotropic materials

for testing as well as some improvements to the current hardware and software. The

systems are now ready for more thorough testing from a variety of users. In the future

a primary goal should be the development of more materials to characterize.

In terms of changes to the hardware, the three-probe system presents some room

for improvements to be made. The three-probe system uses dielectric rods that, as

explored by Joel Love in [10], leave much to be desired. Those issues, including the

beamwidth and production of a planar wavefront, limit the accuracy of the system.

Introduction of new Gaussian focused beam antennas could greatly improve accuracy.

Additionally, the introduction of more limit switches on some of the mounting rails

would be useful. This would allow for completely safe operation, as currently not

all directions of movement are terminated with a limit switch. Limit switches on

the rotary table that controls the third moving arm would also allow for complete

automation and would enhance positional accuracy.

The software can also be updated and improved in the future. There are some

minor bugs related to timeouts and lag on button response that could be investigated

and solved. More features could be added as needed for future users. Manual control

of the sample holder for the three-probe system would be advantageous.
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.1 Waveguide NRW Code

function[f,mu,ep] = NRW(file,d,a,Save,name)

% d=(6.27)*1e-3;

% a=(72.5)*1e-3;

% filename = ’MatCharTest.xls’;

% directory = ’C:\Users\paard\Desktop\Toms Labview’;

filename = name;

directory = Save;

fileDest = fullfile(directory,filename);

File1 = importdata(’test_data_1.csv’);

File2 = importdata(’test_data_2.csv’);

File3 = importdata(’test_data_3.csv’);

File4 = importdata(’test_data_4.csv’);

f = File1(:,1);

S11Real = File1(:,2);

S11Imag = File2(:,2);

S21Real = File3(:,2);

S21Imag = File4(:,2);

s11 = S11Real + i*S11Imag;

s21 = S21Real + i*S21Imag;

%%% Constitutive Parameters based on HFSS’s Model %%%%%%%%%%%%%%%%%%%

c=3e8;

lamda=c./f;

fc=c/(2*a);

chi=(s11.^2-s21.^2+1)./(2.*s11);

rho=chi+sqrt(chi.^2-1);

rho(abs(rho)>1)=chi(abs(rho)>1)-sqrt(chi(abs(rho)>1).^2-1);

prop=(s11+s21-rho)./(1-(s11+s21).*rho);

n=floor(abs(mean(diff(unwrap(angle(prop))))*f(1)/(diff(f(1:2))*2*pi)));

prop=(real(-log(prop))+1i*(unwrap(imag(-log(prop)))+n*2*pi))/d;

mu=((1+rho)./(1-rho)).*prop.*c./(2*i.*pi.*f.*sqrt(1-(fc./f).^2));

ep=((fc./c).^2-(prop/(2*pi)).^2).*lamda.^2./mu;
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f = f/(1e9);

%header = {’Freq (GHz)’; ’Epsilon’;’Mu’;’S11’;’S21’};

%data = [f ep mu s11 s21];

datTable = table(f,ep,mu,s11,s21);

writetable(datTable,fileDest,’WriteRowNames’,true);

f = f’;

mu = mu.’;

ep = ep.’;

end

.2 Anisotropic NRW Code

function [frequency,mu,epsilon] = labview_test_function(file,d)

% Path

% C:\VNA\S2VNA\CSV

% file = ’test_data_broadside’;

file_1 = file + "_1.csv";

file_2 = file + "_2.csv";

file_3 = file + "_3.csv";

file_4 = file + "_4.csv";

% d=(2.3)*1e-3;

M1 = importdata(file_1);

M2 = importdata(file_2);

M3 = importdata(file_3);

M4 = importdata(file_4);

f = M1(:,1);

c=3*power(10,8);

Lamda=(c./f);

K=(2*pi)./Lamda;

Pb=K*d;

p=exp(-1i*Pb);

% p = 1;
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s11=(M1(:,2)+1i*M2(:,2));

s21=p.*(M3(:,2)+1i*M4(:,2));

c=3*power(10,8);

Lamda=(c./f);

K=(2*pi)./Lamda;

f1=f.*1e-9;

% figure; % Plot the logarithmic magnitudes of

% plot(f1,20*log10(abs(s11)),’-b’,’LineWidth’,2.5)

% hold on

% plot(f1,20*log10(abs(s21)),’-b’,’LineWidth’,3)

% legend(’Measured’,’Simulated’);

% legend1 = legend(’show’);

% set(legend1,...

% ’FontSize’,20,...

% ’FontName’,’Times New Roman’);

% grid on

% axis([7 8 -40 0]);

zNumerator=((1+s11).^2-(s21.^2));

zDenomenator=((1-s11).^2-(s21.^2));

zNumDen=zNumerator./zDenomenator;

% zNumDen=transform(zNumDen);

z=sqrt(zNumDen);

nNumerator=(1-s11.^2+s21.^2);

nDenomenator=(2*s21);

alpha=nNumerator./nDenomenator;

% alpha=transform(alpha);

n=(1./(K*d)).*acos(alpha);

epsilon=n./z;

mu=n.*z;

epsilon = epsilon.’;

mu = mu.’;

% figure;

% plot(f1,real(epsilon),’-b’,’LineWidth’,2.5);

% hold on

% plot(f1,imag(epsilon),’-.k’,’LineWidth’,3);

% legend(’Re(\epsilon)’,’Im (\epsilon)’);

% legend1 = legend(’show’);

% set(legend1,...

% ’FontSize’,20,...

% ’FontName’,’Times New Roman’);
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% grid on

% axis([7 8 -5 5]);

% figure();

% plot(f1,real(mu),’-b’,’LineWidth’,2.5);

% hold on

% plot(f1,imag(mu),’-.k’,’LineWidth’,3);

% legend(’Re(\mu)’,’Im (\mu)’);

% legend1 = legend(’show’);

% set(legend1,...

% ’FontSize’,20,...

% ’FontName’,’Times New Roman’);

% grid on

% axis([7 8 -1.5 1.5]);

% A=[f1 real(epsilon) imag(epsilon)];

% xlswrite(’ep_rohacell’,A);

% B=[f1 real(mu) imag(mu)];

% xlswrite(’mu_rohacell’,B);

% eps = epsilon.*mu;

frequency = f1’;

end
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