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SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS
WITH PATCHES OF ZERO GRADIENT: EXISTENCE,
REGULARITY AND CONVEXITY OF LEVEL CURVES

L. CAFFARELLI AND J. SALAZAR

Abstract. In this paper, we first construct “viscosity” solutions (in the
Crandall-Lions sense) of fully nonlinear elliptic equations of the form

F (D2u, x) = g(x, u) on {|∇u| 6= 0}
In fact, viscosity solutions are surprisingly weak. Since candidates for solu-

tions are just continuous, we only require that the “test” polynomials P (those
tangent from above or below to the graph of u at a point x0) satisfy the cor-
rect inequality only if |∇P (x0)| 6= 0. That is, we simply disregard those test
polynomials for which |∇P (x0)| = 0.

Nevertheless, this is enough, by an appropriate use of the Alexandroff-
Bakelman technique, to prove existence, regularity and, in two dimensions, for
F = ∆, g = cu (c > 0) and constant boundary conditions on a convex domain,
to prove that there is only one convex patch.

Introduction

We study some properties of viscosity solutions of fully nonlinear elliptic equa-
tions of the form

F (D2u, x) = g(x, u) on {|∇u| 6= 0}(1)

or, more precisely,

F (D2u, x) = g(x, u)χ{|∇u|6=0}(x) .

Equations of this kind appear in several contexts. For example, the stationary
equation for the mean field theory of superconducting vortices, derived formally by
Chapman in [7], takes this form when the scalar stream function admits a functional
dependence on the scalar magnetic potential. In general, solutions are expected to
be C1,1 or at least W 2,p and satisfy the equation a.e. outside “patches” where the
gradient vanishes.

The time dependent equations of Chapman’s mean field model form a degenerate
parabolic elliptic system. Viscosity solutions of this system were investigated in two
dimensions by Elliott, Schätzle, and Stoth in [8]. They also found special solutions
of the stationary problem.
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In two dimensions, for F = ∆, g = cu and constant boundary conditions on a
convex domain, there is supposedly only one convex patch.

In this paper, we first construct “viscosity” solutions of (1), in the Crandall-
Lions sense. In fact, viscosity solutions are surprisingly weak. Since candidates
for solutions are just continuous, we only require that the “test” polynomials P
(those tangent from above or below to the graph of u at a point x0) satisfy the
correct inequality only if |∇P (x0)| 6= 0. That is, we simply disregard those test
polynomials for which |∇P (x0)| = 0.

Nevertheless, this is enough, by an appropriate use of the Alexandroff-Bakelman
technique, to prove existence, regularity, and the “one convex patch” theorem.

Existence of solutions of Dirichlet’s problem in an arbitrary domain Ω is estab-
lished given a continuous subsolution dominated by a continuous supersolution.
The continuity of the candidate for a solution is proved assuming that F does not
depend on x. We believe this restriction has much to do with the method (Jensen’s
approximation), and it would be interesting to find a proof that releases it.

The first and main result leading to regularity is Proposition 5, which shows that
the solutions actually satisfy uniform elliptic inequalities with bounded right hand
side and no gradient restriction (see Corollary 6). This result allows us to apply
the powerful machinery of nonlinear elliptic theory and obtain the Alexandroff-
Bakelman-Pucci estimates, Harnack’s inequality and Cα regularity (Corollary 7).
We also discuss W 2,p regularity, using the notion of Lp-viscosity solutions (intro-
duced by Caffarelli, Crandall, Kocan and Śviech in [4]).

In the particular case of equation ∆u = cu on {|∇u| 6= 0}, where c is a positive
constant, we prove that u is C1,1. The main tool is the monotonicity lemma of Alt,
Caffarelli and Friedman [1], and the proof is adapted from that of Theorem I in [5].
If the connected components of the set {|∇u| = 0} are isolated, the mathematical
problem becomes, locally, identical to an inverse problem treated by Caffarelli, Karp
and Shahgholian in [5].

Section 3 is devoted to the finiteness of the (n−1)-dimensional Hausdorff measure
of the free boundary. A couple of tools are needed and previously proved: the strict
positivity of nonnegative supersolutions and the quadratic growth of subsolutions.

We finish with an application to the equation ∆u = u on {|∇u| 6= 0}, on a
bounded, convex, plane domain Ω ⊂ R2, such that u ≡ 1 on ∂Ω. We prove that the
interior of the set {|∇u| = 0} is convex (see Proposition 20). In particular, there
is at most one connected component of {|∇u| = 0} with nonempty interior; this
answers a question posed by C. M. Elliott. B. Kawohl has kindly told us that an
n-dimensional version of this result can be obtained using the methods in his book
[12].

Before starting, let us give the precise meaning of (1): A subsolution is an upper
semicontinuous (u.s.c.) function u, u <∞, such that the inequality

F (D2P, x) ≥ g(x, u(x))

holds for any paraboloid P touching u from above at x, provided |∇P (x)| 6= 0.
A supersolution of (1) is a lower semicontinuous (l.s.c.) function u, u > −∞,
such that the opposite inequality holds for paraboloids touching u from below with
the same extra condition (|∇P (x)| 6= 0). A solution is simultaneously a sub- and
supersolution.

Throughout the paper, Ω denotes the domain of u, which is a domain in n-
dimensional Euclidean space. λ and Λ are the ellipticity constants of F , which is
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assumed to be continuous and uniformly elliptic. Also, g is assumed to be contin-
uous. New hypotheses on F and g will be imposed as needed.

1. Existence of solutions

The Perron-Wiener method has been used extensively by Ishii [11] to solve the
Dirichlet problem by the viscosity approach. Boundedness of the domain Ω is
not needed, but we do assume that a continuous subsolution and a continuous
supersolution dominating the subsolution already exist.

In order to apply the Perron-Wiener method, we shall verify the usual properties
of the family of subsolutions (or supersolutions). The proposition below is a well
known result for elliptic equations. Its proof follows the classical pattern, but special
care shall be taken to deal with the condition on the gradient.

We denote by u∗ the upper semicontinuous envelope of a given function u, i.e.,

u∗(x) = lim sup
z→x

u(z) .

In a similar way, we define the lower semicontinuous envelope

u∗(x) = lim inf
z→x

u(z) .

u∗ and u∗ are upper and lower semicontinuous respectively.

Proposition 1. Let {uα} be a nonempty family of subsolutions of (1) and put

u = sup
α
uα .

Then, u∗ is a subsolution, provided u∗ <∞.

Proof. Let P be a paraboloid touching u∗ from above at some point x0. Assume
that |∇P (x0)| 6= 0. Fix ε > 0 and put

Q(x) = P (x) +
ε

2Λ
|x− x0|2 .

By continuity of the functions involved, there is δ > 0 such that for all x ∈
Bδ(x0), the following assertions hold:

a) |∇P (x)| 6= 0, |∇Q(x)| 6= 0;
b) F (D2P, x) ≤ F (D2P, x0) + ε;
c) g(x, r) ≥ g(x0, u

∗(x0))− ε, for all r such that |r − u∗(x0)| ≤ εδ2

Λ .

Now, choose η < δ/2 such that

|P (x)− P (x0)| ≤ εδ2

16Λ
, ∀x ∈ Bη(x0) .

Note that there exist an index α and a point x′ ∈ Bη(x0), such that

uα(x′) ≥ u∗(x0)− εδ2

16Λ
.

Accordingly,

Q(x′)− uα(x′) ≤ Q(x′)− u∗(x0) +
εδ2

16Λ

= P (x′)− P (x0) +
ε

2Λ
|x′ − x0|2 +

εδ2

16Λ

≤ εδ2

4Λ
.
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Since

Q(x)− uα(x) ≥ ε

2Λ
|x− x0|2 ,

the infimum of Q− uα is attained at a point x1 ∈ Bδ/√2. At this point, we have

F (D2Q, x1) ≥ g(x1, uα(x1))

and

|u∗(x0)− uα(x1)| ≤ |Q(x0)−Q(x1)|+Q(x1)− uα(x1)

≤ εδ2

16Λ
+

ε

2Λ
|x1 − x0|2 +

εδ2

4Λ
≤ 13

16
εδ2

Λ
.

By the ellipticity of F ,

F (D2Q, x) = F (D2P +
ε

Λ
I, x) ≤ F (D2P, x) + ε .

Putting all these inequalities together, we obtain

F (D2P, x0) + 3ε ≥ F (D2P, x1) + 2ε

≥ F (D2Q, x1) + ε

≥ g(x1, uα(x1)) + ε

≥ g(x0, u
∗(x0)) .

The following proposition is a first approach for solving the Dirichlet problem.
It will be refined below under additional hypotheses on F and g.

Proposition 2. For any given continuous subsolution v and a continuous super-
solution v such that v ≤ v, there exist a function u, v ≤ u ≤ v, such that u∗ is a
supersolution and u∗ is a subsolution.

Proof. Denote by u the supremum of all continuous subsolutions less than or equal
to v. By Proposition 1, u∗ is a subsolution.

To prove that u is a supersolution (u = u∗, since u is the supremum of continuous
functions), let P be a paraboloid touching u from below at a point x0, such that
|∇P (x0)| 6= 0.

If u(x0) = v(x0), then P touches v from below at x0. Consequently, F (D2P, x0)
≤ g(x0, u(x0)).

Now, suppose

u(x0) < v(x0) and F (D2P, x0) > g(x0, u(x0)) .

Let

a = F (D2P, x0)− g(x0, u)

and choose δ1 > 0 and ν > 0 such that for all x ∈ Bδ1(x0) and |r− u∗(x0)| < ν, we
have

g(x, r) ≤ g(x0, u(x0)) +
a

3
and

F (D2P, x) ≥ F (D2P, x0)− a/3 .
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Let δ2 > 0 be such that for all x ∈ Bδ2(x0)∣∣∣P (x)− P (x0)− a

6Λ
|x− x0|2

∣∣∣ ≤ ν

2
.

Then, for |β| < ν/2, the paraboloid

Q(x) = P (x)− a

6Λ
|x− x0|2 + β

is a subsolution of (1) in Bδ1 ∩ Bδ2 . In fact, by the ellipticity of F and the above
inequalities, we get

F (D2Q, x) = F
(
D2P − a

3Λ
I, x
)

≥ F (D2P, x) − a

3

≥ F (D2P, x0)− 2a
3

≥ g(x0, u(x0)) +
a

3
≥ g(x,Q(x)) .

The last inequality holds because

|Q(x)− u(x0)| =
∣∣∣P (x) − P (x0)− a

6Λ
|x− x0|2

∣∣∣ ≤ ν .
To reach a contradiction, we shall construct a continuous subsolution less than

or equal to v and strictly greater than u at x0.
First we choose γ > 0 and δ3 > 0 such that

v − P ≥ γ on Bδ3(x0) .

Now let δ = min{δ1, δ2, δ3}. By the axiom of choice and the compactness of ∂Bδ,
there is a continuous subsolution v ≤ v, such that

v − P ≥ − aδ
2

12Λ
on ∂Bδ .

Taking β < min{ν/2, γ, aδ2

12Λ}, β > 0, we see that the function

w(x) =

{
v(x) ∨Q(x) , x ∈ Bδ,
v(x) , x /∈ Bδ,

is a continuous subsolution less than or equal to v, and w(x0) > u(x0). This is a
contradiction.

A most natural question is whether the function u above is actually continuous.
We answer this question under suitable additional hypotheses.

Proposition 3. Let v and v be the two functions in Proposition 2. Suppose that

Ωα = {x ∈ Ω; v − v ≥ α}
is compact for all α > 0.

We also assume at this point that F does not depend on x and that for any given
compact set D ⊂ Ω, there is c > 0 such that for all x ∈ D, all r ∈ R, and all h > 0,

g(x, r + h) ≥ g(x, r) + ch .

Then, there is a viscosity solution u such that v ≤ u ≤ v.
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Remark. By Proposition 2, taking u equal to the supremum of all continuous sub-
solutions less than or equal to v, only the continuity of u remains to be proved.

Before going into the proof of this proposition, we need some notation and prop-
erties of Jensen’s approximate solutions.

Suppose there is a point x0 ∈ Ω such that

u∗(x0) > u(x0);

otherwise, u is continuous and there is nothing to prove.
Following Jensen’s idea, define

uε(x) = sup
y∈Ωα

{
u∗(y) + ε− 1

ε
|y − x|2

}
, x ∈ Ωα

where α is a positive constant, whose precise value will be fixed later.
Jensen’s approximation of a continuous solution enjoys many nice properties; a

list of them can be found in the book by Caffarelli and Cabré [3], p. 43, Theorem
5.1. Suitable versions of those properties, adapted to our case, are listed below. We
omit the proofs since those given in [3] work with minor changes.

a) uε is a decreasing family of continuous functions.
b) Let f be a continuous function such that f ≥ u∗. For each β > 0 there is an

ε0 > 0 such that

uε ≤ f + β on Ω2α , ∀ε < ε0 .

c) There is a point x′ ∈ Ωα such that

uε(x) = u∗(x′) + ε− 1
ε
|x− x′|2 .

d) The point x′ in c) satisfies

|x− x′|2 ≤ ε sup
Ωα

(s− t) .

Now, we can state the key fact in the proof of Proposition 3.

Lemma 4. Under the hypothesis of Proposition 3, for each δ > 0, there exists an
ε1 > 0 such that for all ε < ε1, the function uε(x) − δ is a viscosity subsolution of
(1) in Ω2α.

Proof. Let P be a paraboloid touching uε − δ from above at a point x0 ∈ Ω2α.
Assume |∇P (x0)| 6= 0 and define

Q(x) = P (x+ x0 − x′) + δ +
1
ε
|x0 − x′|2 − ε .

Then, one readily verifies that

u∗(x) ≤ uε(x+ x0 − x′) +
1
ε
|x0 − x′|2 − ε ≤ Q(x) ,

u∗(x′) = Q(x′) ,

and

∇Q(x′) = ∇P (x0) 6= 0 .
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Hence

F (D2Q) ≥ g
(
x′, u∗(x′)

)
= g
(
x′, uε(x0) +

1
ε
|x0 − x′|2 − ε

)
≥ g
(
x′, uε(x0)− δ

)
+ c
(
δ +

1
ε
|x0 − x′|2 − ε

)
,

provided δ + 1
ε |x0 − x′|2 − ε ≥ 0.

By d), since Ωα × I (where I = {r ∈ R; infΩα v − δ ≤ r ≤ supΩα v + 1}) is
compact and g is continuous, we can find ε1 > 0 such that for all ε ≤ ε1, |x0 − x′|
is small enough and we have

g
(
x′, uε(x0)− δ

)
≥ g
(
x0, u

ε(x0)− δ
)
− c δ

2
.

Consequently, for ε1 ≤ δ/2, we arrive at

F (D2P ) ≥ g
(
x0, u

ε(x0)− δ
)
.

Proof of Proposition 3. Let δ = u∗(x0)− u(x0) and fix ε0 > 0 such that

uε ≤ v + δ/3 on Ω2δ/3 , ∀ε < ε0;

see property b) above. In addition, by Lemma 4, let ε1 > 0 be such that the
function uε − δ is a continuous viscosity subsolution of (1) in Ω2δ/3.

Then, for ε ≤ ε0 ∧ ε1, we have

i) uε(x0)− δ ≥ u(x0) + ε,
ii) uε − δ ≤ v in Ω2δ/3,
iii) uε − δ ≤≤ v − 2δ/3 = v on ∂Ω2δ/3.

This in particular implies that the function

w(x) =

{
(uε(x) − δ) ∨ v(x) , x ∈ Ω2δ/3,

v(x) , x /∈ Ω2δ/3,

is a continuous subsolution less than or equal to v and w(x0) > u(x0). This leads
to a contradiction.

2. Regularity of solutions

From now on, we assume that

F (0, x) = 0 ∀x ∈ Ω .

The following proposition shows that the solutions of (1) actually satisfy uniform
elliptic inequalities with bounded right hand side and no gradient restriction. This
result allows us to apply the powerful machinery of the nonlinear elliptic theory.

Proposition 5. Let u be a continuous supersolution of (1). Then,

F (D2u, x) ≤ g+(x, u)

in the viscosity sense.
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Proof. Assume that there is a paraboloid P , touching u from below at a point x0,
such that

F (D2P, x0) > g+(x0, u(x0)) .

Since u is a supersolution of (1), we must have |∇P (x0)| = 0. Now, put

a = F (D2P, x0)− g+(x0, u(x0)) ,

and fix δ > 0 such that for all x ∈ Bδ(x0)

F (D2P, x) ≥ g+(x0, u(x0)) +
3a
4
,

and

g(x, u(x)) ≤ g+(x0, u(x0)) +
a

4
.

Define

P1(x) = P (x) +
a

8Λ
(δ2 − |x− x0|2) .

If Q is a paraboloid touching u− P1 from below at x ∈ Bδ(x0) such that

∇Q(x) 6= −∇P1(x) ,

then

F (D2Q+D2P1, x) ≤ g(x, u(x)) .

By the ellipticity of F ,

F (D2P, x) ≤ F (D2P1, x) +
a

4

and

F (D2P1, x) ≤ F (D2Q+D2P1, x)−M−
(
D2Q,

λ

n
,Λ
)
.

Here, M− denotes Pucci’s minimal operator defined (for 0 < λ ≤ Λ fixed) on the
set of n× n real symmetric matrices by

M−
(
M,λ,Λ

)
= λ

∑
ei>0

ei + Λ
∑
ei<0

ei,

where the ei are the eigenvalues of M . We will also make use of Pucci’s maximal
operator, defined by

M+
(
M,λ,Λ

)
= Λ

∑
ei>0

ei + λ
∑
ei<0

ei .

From this, we obtain

M−
(
D2Q,

λ

n
,Λ
)
≤ g(x, u(x)) − g+(x0, u(x0))− a

2
≤ −a

4
.
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In particular, if Q is affine and touches u−P1 from below at a point x ∈ Bδ(x0),
then

∇Q(x) = −∇P1(x) .(2)

Now, consider the convex envelope of u − P1 on Bδ(x0), denoted by Γ. By (2),
there is a unique supporting plane at each point of the set {x;u − P1 = Γ}. In
particular, Γ is differentiable at the contact points {x;u− P1 = Γ}, and

∇Γ = −∇P1 on {x;u− P1 = Γ} .
Since Γ is convex, for all x, x′ ∈ {u− P1 = Γ},

〈∇Γ(x) −∇Γ(x′), x− x′〉 ≥ 0 .

Then,

〈∇P1(x)−∇P1(x′), x− x′〉 ≤ 0 .(3)

On the other hand, since F (0, x) = 0,

M+
(
D2P1,

λ

n
,Λ
)
≥ g+

(
x0, u(x0)

)
+

3a
4
> 0 .

This implies the existence of a coordinate system in which P1 is strictly convex
with respect to the first variable. In particular, it is not possible to find two
contact points x, x′ ∈ {u− P1 = Γ} that differ only by the first component, since,
by convexity, the scalar product in (3) would be strictly positive. We conclude that
{x;u − P1 = Γ} is a closed graph in the x1 direction and has Lebesgue measure
equal to zero.

Since u− P1 ≥ 0 on ∂Bδ and u− P1(x0) < 0, there is an η > 0 such that

∇Γ ({x;u− P1 = Γ}) ⊃ Bη(0) .

Then

|Bη(0)| ≤
∫

{u−P1=Γ}

detD2Γ = 0 ,

which is a contradiction.

Using a similar argument, we can prove the subsolution version of Proposition
5. If u is a continuous subsolution of (1), then

F (D2u, x) ≥ −g−(x, u)

in the viscosity sense.
For future reference, let us state the following corollary,

Corollary 6. If u is a solution of (1), then

−g−(x, u) ≤ F (D2u, x) ≤ g+(x, u)(4)

in the viscosity sense.

Denote by S(λ,Λ, g) the set of supersolutions of the corresponding Pucci’s min-
imal equation with right hand side equal to g, and by S(λ,Λ, g) the set of subsolu-
tions of the Pucci’s maximal equation. Put S∗ = S∩S. The following properties are
straightforward applications of Pucci’s extremal operator theory; see [3], chapter
2.2.
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Corollary 7. a) If u is a solution of (1), then

u ∈ S
(λ
n
,Λ, g+

)
∩ S
(λ
n
,Λ,−g−

)
⊂ S∗

(λ
n
,Λ, |g|

)
.

b) Alexandroff-Bakelman-Pucci estimate:
Let u be a solution of (1) in Ω = Bd (a ball of radius d). If u ≥ 0 on ∂Bd,
then

sup
Bd

u− ≤ Cd
(∫

Bd∩{u=Γu}
(g+)n

)1/n

,

where C is a universal constant and Γu denotes the convex envelope on B2d

of the function equal to −u− in Bd and zero on B2d \Bd.
c) Harnack Inequality:

Let Ω = Q1 be the cube {max |xi| < 1/2}. Denote by Q1/2 the concentric cube
with sides half as long. Suppose the function g̃ : x → g(x, u(x)) is bounded.
Then, there is a universal constant C such that for all solutions u in Q1,
u ≥ 0, we have

sup
Q1/2

u ≤ C
(

inf
Q1/2

u+ ‖g̃‖Ln(Q1)

)
.

d) Cα regularity:
If u is a solution of (1) in Ω = Q1, we have:

i) For some universal constant 0 < µ < 1,

Osc
Q1/2

u ≤ µOsc
Q1

u+ 2‖g̃‖Ln(Q1) .

ii) There exist universal constants 0 < α < 1 and c > 0 such that u ∈
Cα(Q1/2) and

‖u‖Cα(Q1/2 ) ≤ C
(
‖u‖L∞(Q1) + ‖g̃‖Ln(Q1)

)
.

Let us briefly discuss W 2,p regularity. To this end, we need the notion of Lp-
viscosity solution, introduced by Caffarelli, Crandall, Kocan and Śviech in [4].

Remark. Thanks to a priori estimates found by Caffarelli [2] (extended later by
Escauriaza [9]), leading in particular to a generalized maximum principle for strong
solutions, (4) also holds in the sense of Lp-viscosity, for all p ≥ n; see Proposition
2.9 in [4].

Corollary 8. If F is concave and independent of x, and if there exists a constant
K such that, for all symmetric matrices A and all 0 ≤ δ ≤ 1,

|F (δA)| ≤ K|F (A)| ,

then a solution u of (1) is in W 2,p
loc , and (4) holds for a.e. x ∈ Ω.

Proof. As remarked above, (4) is also verified in the sense of Lp-viscosity (p ≥ n).
By Theorem 3.6 in [4], pointwise a.e., u is twice sub- and superdifferentiable. By
the generalized Rademacher-Stepanov theorem, u is twice differentiable a.e.; see
[6] and [13]. By Proposition 3.4 in [4], (4) holds a.e. In particular, F (D2u) ∈ Lp.
By the existence and uniqueness result of Corollary 3.10 in [4], u is an Lp-strong
solution and u ∈W 2,p

loc for all p ≥ n.
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By Corollary 8 and direct estimates of the Green function, viscosity solutions of

∆u = cu in {|∇u| 6= 0} ,(5)

where c is a positive constant, are in C1,α. To improve this result, namely, to prove
u ∈ C1,1, we use the monotonicity lemma of Alt, Caffarelli and Friedman [1] in a
way already exploited in [5] (see the proof of Theorem I in that paper).

Lemma 9. If u is a viscosity solution of (5), then u ∈ C1,1.

Proof. We obtain a Lipschitz constant for ∇u if the second partial derivatives of
u are uniformly bounded in Br0/4(x0) ∩ {|∇u| > 0} for all x0 ∈ ∂{|∇u| > 0} ∩ Ω
and r0 > 0 such that Br0(x0) ⊂ Ω. For this, it is enough to show the existence of
a constant C such that

sup
Br(x0)

|u(x)− u(x0)| ≤ Cr2 ∀r ≤ r0 .(6)

In fact, for all x ∈ Br0/4(x0) ∩ {|∇u| > 0}, putting rx = dist(x, ∂{|∇u| > 0}),
we have then

|u(x)− u(x0)| ≤ Crx2 .

Define

v(y) =
u(x+ rxy)− u(x0)

rx2
∀y ∈ B1(0) ,

Note that v is bounded on the unit ball and satisfies ∆v(y) = ∆u(x + rxy). By
elliptic estimates, Di,jv(0) = Di,ju(x) are uniformly bounded.

We will prove (6) for the sequence ri = 2−ir0 (which is enough). The proof will
be done in two steps.

1st Step. Define

Mi = sup
x∈Bri (x0)

|u(x)− u(x0)| .

We can assume that there is a sequence ij →∞ such that

4Mij+1 ≥Mij

(if there is not such a sequence, (6) is proved). Suppose (6) already fails for the
sequence ij defined above. Taking a subsequence if necessary, we can always assume
that

Mij ≥ j2−2ij .(7)

Define

uj(x) =
u(x0 + 2−ijx)− u(x0)

Mij+1
∀x ∈ B1 = B1(0) .
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Then
i) ‖∆uj‖∞,B1 ≤ CM02−2ij

Mij+1
≤ CM0Mij

jMij+1
≤ 4CM0

j → 0 ,

ii) supx∈B1/2
|uj(x)| = 1 ,

iii) ‖uj‖∞,B1 ≤
Mij

Mij+1
≤ 4 , and

iv) uj(0) = |∇uj(0)| = 0 .
Then, there is a subsequence of uj converging in C1,α(B1) to a nonzero harmonic

function u0 satisfying u0(0) = |∇u0(0)| = 0. This follows from the compactness and
regularity properties of harmonic functions (Gilbarg and Trudinger [10], Theorem
8.32), coupled with the uniform regularity of the uj’s, and the construction of the
correcting term w (in (8.82) in [10]) that shows that the limit is harmonic.

Now, fix a unit vector ν ∈ Sn−1 and denote by uj,ν the directional derivative
of uj in the direction ν. By the monotonicity lemma ([1]), since uν+ and uν

− are
subharmonic on Br0(x0) and uν(x0) = 0,

1
r2n

∫
Br(x0)

|∇uν+|2
∫

Br(x0)

|∇uν−|2 ≤ C,

where C depends only on the W 2,2 norm of u on Br0(x0). By a change of variable
(treating C below as a generic constant that may change from line to line),∫

B1

|∇uj,ν+|2
∫
B1

|∇uj,ν−|2 ≤ C
(

2−2ij

Mij+1

)4

≤ C
(

2−2ij

Mij

)4

.

By Poincaré’s inequality and (7),∫
B1

|uj,ν+ −m+
j |2
∫
B1

|uj,ν− −m−j |2 ≤ Cj−4

where m±j are the meanvalues of uj,ν± respectively. Letting j →∞, we get∫
B1

|u0,ν
+ −m+

0 |2
∫
B1

|u0,ν
− −m−0 |2 = 0

Then, either u0,ν
+ or u0,ν

− vanishes identically. Since u0,ν is harmonic, u0,ν(0) = 0
and u0,ν does not change sign, u0,ν vanishes identically. Since ν is arbitrary, u0 ≡
u0(0) = 0, which is a contradiction.

Then, there is a constant C such that

Mi ≤ C2−2i ∀i ∈ I = {i ∈ N; 4Mi+1 ≥Mi} .(8)

2nd Step. Now, suppose that there exists an integer i > min I such that

Mi > 4C2−2i .

For the first i with the above property, we must have

Mi−1 ≤ 4C2−2(i−1) = 16C2−2i ≤ 4Mi .

Then, i− 1 ∈ I (I was defined in (8)). By (8),

Mi ≤Mi−1 ≤ C2−2(i−1) = 4C2−2i .

This contradicts our assumption.
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Remark. One can show that C depends (linearly) only on supBr0 (x0) |u(x)−u(x0)|,
but for simplicity and because in this paper we only need the regularity of u and
not the estimates for the C1,1 norm, we decided to prove (6) for a given u.

3. Hausdorff measure of the free boundary

We start by establishing two technical lemmas needed to prove the finiteness of
the (n− 1)-dimensional Hausdorff measure of the free boundary (Proposition 13).

Lemma 10. Let u ≥ 0 be a viscosity supersolution of

M−(D2u, λ,Λ) = cu(x) .

Then u > 0 or u ≡ 0.

Proof. Fix a point x0 such that u(x0) > 0 and put

v(r) = inf
x∈Br(x0)

u(x) .

Since M−(D2v, λ,Λ) ≤ cv and vr is negative,

λvrr + (n− 1)Λ
1
r
vr ≤ cv(r)

in the viscosity sense. In particular, since v(0) > 0, v cannot vanish for r < r0 =
dist(x0, ∂Ω).

Lemma 11. Let u be a viscosity subsolution of

M+(D2u) = c in {|∇u| 6= 0},(9)

where c > 0 is a constant. Let x0 ∈ Ω and assume there is a paraboloid P , touching
u from above at x0, such that |∇P (x0)| 6= 0. Then,

sup
x∈Br(x0)

u(x) ≥ u(x0) +
c

2nΛ
r2 , for all r < dist(x0,Ωc) .(10)

Proof. Fix a < c and put

v(x) = u(x)− u(x0)− a

2nΛ
|x− x0|2 .

The supremum of v is attained on ∂Br. In fact, if x1 ∈ Br and

v(x1) = sup
x∈Br

v(x) ,

then the paraboloid

Q(x) = v(x1) + u(x0) +
a

2nΛ
|x− x0|2

touches u from above at x1.
If x1 6= x0, then |∇Q(x1)| 6= 0. By (9),

a =M+
( a

nΛ
I, λ,Λ

)
≥ c ,

which, by the choice of a, is a contradiction.
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If x1 = x0, Q touches u from above at x0. We cannot conclude directly, because
|∇Q(x0)| = 0. But, by hypothesis, there is another paraboloid P touching u
from above at x0, such that |∇P (x0)| 6= 0. Using these two paraboloids, it is
easy to construct a third paraboloid P1, touching u from above at x0, satisfying
|∇P1(x0)| 6= 0 and such that

M+(D2P1, λ,Λ) ≤ a ,
which is a contradiction again.

In particular,

v(x1) = u(x1)− u(x0)− ar2

2nΛ
≥ 0 .

Since a < c is arbitrary, the lemma is proved.

Remark. By approximation, (10) is true for all x0 in the closure of the set of
points for which there is a paraboloid P , touching u from above at x0, such that
|∇P (x0)| 6= 0.

Corollary 12. Suppose u ∈ C1,1(Ω) is a viscosity subsolution of (9). There exist
two positive constants ε0 and c0, depending on c,Λ, n and the Lipschitz constant of
∇u (denoted c1), such that for all x0 ∈ ∂{|∇u| > 0} ∩ Ω, for all r < dist(x0,Ωc),∣∣∣{|∇u| > ε0r

}
∩Br(x0)

∣∣∣ ≥ c0rn .
Proof. Assume, without loss of generality, that u(x0) = 0. For all x, x′ ∈ Br(x0),

|u(x)− u(x′)| ≤ c1r|x− x′| .

Let x1 be some point in ∂Br where supBr u is attained. Then, for all x ∈ Br(x0),

|u(x)| ≥ c

2nΛ
r2 − c1r|x − x1| .

Putting ρ = cr/6nΛc1, the above inequalities become:
i) |u(x)| ≤ cr2/6nΛ in Bρ(x0).
ii) |u(x)| ≥ cr2/3nΛ in Bρ(x1) ∩Br(x0).
Denote by uν the directional derivative of u in the direction

ν =
x1 − x0

|x1 − x0|
.

Let x, x′ ∈ Br(x0) be such that x′ − x = λν for some positive λ. Integrating uν
along the segment [x, x′], we obtain

u(x)− u(x′) =
∫

[x,x′]

uν dx ≤ εr|x − x′|+ c1r
∣∣{|∇u| ≥ rε} ∩ [x, x′]

∣∣ .
Take ε0 = c/12nΛ. Denote by Hν(x0) the hyperplane x0 + {(x− x0) · ν = 0}. If

x ∈ Hν(x0) ∩Bρ(x0) and x′ ∈ Bρ(x1) ∩ ∂Br, then
cr

12nΛ
≤ c1

∣∣{|∇u| ≥ rε} ∩ [x, x′]
∣∣ .

The result is obtained by integrating both sides of this inequality on the disc
Hν(x0) ∩Bρ/2(x0).

Notation. Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.
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Proposition 13. Let u ∈ C1,1(Ω), smooth in {|∇u| > 0}. Assume that in the set
{|∇u| > 0}, u satisfies:

i) ∆u ≥ c and(11)

ii) |∇(∆u)| ≤M ,

where c and M are positive constants.
Then, there is a constant h, depending on c, n and the Lipschitz constant of ∇u

(denoted c1), such that for all balls Br ⊂ Ω

Hn−1(∂{|∇u| > 0} ∩Br) ≤ hrn−1 .(12)

Proof. Denote by uj the partial derivatives of u in the j coordinate. For ε > 0,
define

uεj = (uj ∧ c1ε) ∨ (−c1ε) .

Since {uj = 0} ∩ {|∇u| > 0} has null measure (unless uj vanishes identically),
we have ∫

{|∇u|>0}∩Br

∇uj · ∇uεj = lim
ζ→0

∫
Dζj∩Br

∇uj · ∇uεj ,

where Dζ
j = {|uj| > ζ}.

Applying Green’s theorem, since ∂Dζ
j∩∂Br has zero (n−1)-dimensional measure,

we obtain∫
Dζj∩Br

∇uj · ∇uεj = −
∫

Dζj∩Br

∆ujuεj +
∫

∂Br∩Dζj

∂uj
∂ν

uεj +
∫

Br∩∂Dζj

∂uj
∂ν

uεj .

The last integral is negative, since

∂uj
∂ν

uεj = −ζ|∇uj | on Br ∩ ∂Dζ
j .

Then ∫
Dζj∩Br

∇uj · ∇uεj ≤Mc1εr
n|B1|+ c1

2εrn−1σn ,

where σn denotes the measure of Sn−1 and |B1| the measure of the unit ball.
By (11), for any (economic) cover of ∂{|∇u| > 0} ∩ Br by ε-balls centered on

∂{|∇u| > 0}, with finite overlapping, we have

εnN ≤
N∑
i=1

1
c0

∣∣∣{|∇u| > εε0

}
∩Bi

∣∣∣ ≤ m

c0

∣∣∣{0 < |∇u| < c1ε
}
∩Br

∣∣∣ ,
where Bi denotes the balls in the covering, N is the number of balls and m is the
maximal number of overlapping for economic covers.

Since ∫
{|∇u|>0}∩Br

∇uj · ∇uεj ≥
∫

{0<|∇u|<c1ε}∩Br

|∇uj |2
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and ∑
j

|∇uj |2 = ‖D2u‖22 ≥
1
n

(∆u) ≥ c2

n
,

we get ∑
j

∫
{|∇u|>0}∩Br

∇uj · ∇uεj ≥
c2

n

∣∣∣{0 < |∇u| < c1ε
}
∩Br

∣∣∣ .
All these inequalities together give

εn−1N ≤ mn2c1
c0c2

(
M |B1|r + c1σn

)
rn−1 .

Corollary 14. Let u 6≡ 0 be a nonnegative, viscosity solution of (5). Then the
(n−1)-dimensional Hausdorff measure of the free boundary (∂{|∇u| > 0}) is locally
finite and satisfies (12) (locally as well).

Proof. By Lemma 9, u ∈ C1,1(Ω). By Proposition 5 and Lemma 10, u > 0 in Ω.
Since u is smooth on {|∇u| > 0}, we can apply Proposition 13 and get (12) (h
depends locally on inf u and sup |∇u|).

4. Convexity of the free set in a plane convex domain

Before treating the two dimensional case, we need some technical tools that work
in higher dimensions as well. We start by giving a definition.

Definition. Given a ball B ⊂ Rn and a cone V ⊂ Bc, with its vertex at a point
x0 ∈ ∂B, we say that V is non-tangential to ∂B at x0 if the hyperplane H tangent
to ∂B at x0 does not intersect V \ {x0}.

Lemma 15. Let v ≥ 0 be a Lipschitz-continuous, subharmonic function. Suppose
there is a ball B such that B ⊂ {v = 0}, and fix a second ball B′ ⊂ Ω, concentric
with B.

Denote by w the harmonic function in B′ \B equal to 1 on ∂B′ and 0 on ∂B.
Fix x0 ∈ ∂B and define, for any δ > 0 such that Bδ(x0) ⊂ B′,

αδ = inf
{
α > 0 ; v ≤ αw in Bδ(x0) \B

}
.

If

α0 = inf
δ
αδ > 0 ,(14)

then for every cone V ⊂ Bc, non-tangential to ∂B at x0, there is r > 0 such that

v > 0 in V ∩Br(x0) .

Proof. There is a constant a > 0 such that for all sufficiently small ρ > 0,

w ≥ aρ on ∂Bρ(x0) ∩ V .
If the conclusion fails, there is a sequence {xn} ⊂ V , xn → x0, such that

v(xn) = 0. Let

rn = |xn − x0| and ρn =
α0a

2c1
rn .
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Denoting by c1 the Lipschitz constant of v, we have

v ≤ α0a

2
rn in Bρn(xn) \B .

For any α > α0, there is an n such that

v ≤ αw in Brn(x0) \B .
By the maximum principle,

αw − v ≥ α0a

2
rnvn in Bρn(xn) \B ,(15)

where vn denotes the harmonic function on Brn(x0) \ B equal to 1 on ∂Brn(x0) ∩
Bρn(xn) and zero elsewhere on the boundary.

Let wn be the harmonic function in Brn(x0) \B equal to 1 on ∂Brn(x0) \B and
0 on ∂B ∩Brn(x0). Since there is a constant b > 0 such that

w(x) ≤ b|x− x0| ,(16)

then

w ≤ brnwn in Brn(x0) \B .

Dividing (15) by this inequality, we obtain
α

α0
− v

α0w
≥ a

2b
vn
wn

in Brn(x0) \B .

By Harnack estimates valid till the boundary, there is a universal constant β0 > 0
such that

vn
wn
≥ β0 in B 1

2 rn
(x0) \B .

Then

v ≤
(
α− aα0β0

2b

)
w in B 1

2 rn
(x0) \B .

Choosing, for example,

α =
(

1 +
aβ0

4b

)
α0 ,

we get a contradiction.

Corollary 16. Let u 6≡ 0 be a nonnegative, bounded, viscosity solution of (5).
Denote by uν the directional derivative of u in the direction ν ∈ Sn−1.

Fix x0 ∈ ∂{|∇u| > 0} ∩ Ω and assume that there is a ball B ⊂ {|∇u| = 0} such
that x0 ∈ ∂B. Denote by η the outward normal vector to ∂B at x0.

If 〈ν, η〉 > 0, then for any cone V ⊂ Bc, non-tangential to ∂B at x0, there is an
r > 0 such that

uν > 0 in V ∩Br(x0) .

Proof. Since u+
ν is subharmonic, by Lemma 15, all we need to prove is (14). By

(16), this reduces to showing that there is an ε0 > 0 such that, for all r small
enough,

sup
Br(x0)

uν ≥ ε0r .
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Since 〈η, ν〉 > 0, there is a constant γ > 0 (depending on 〈η, ν〉) such that for
all small r, any point x ∈ Bγr(x0) can be joined to B by a segment parallel to ν,
contained in Br(x0). The length of the segment is less than r.

By Lemma 10, u > 0. Then, locally, u is a subsolution of (9) with right hand
side equal to c inf u. By Lemma 11, there is a point x1 ∈ ∂Bγr(x0) such that

u(x1)− u(x0) ≥ c

2nΛ
γ2r2 × inf

Bγr(x0)
u .

Denote by Ix1 the segment, parallel to ν, joining x1 to a point on ∂B. Since
u ≡ u(x0) on B, then

c

2nΛ
γ2r2 × inf

Bγr(x0)
u ≤

∫
Ix1

uν dx ≤ r × sup
Br(x0)

uν .

Corollary 17. Let u be a non-vanishing, nonnegative, bounded, viscosity solution
of (5). For any ν ∈ Sn−1, for any compact connected component K of {|∇u| = 0}
such that K◦ 6= ∅ we have

K ∩ {uν < 0} 6= ∅ and K ∩ {uν > 0} 6= ∅ .

Proposition 18. Let Ω be a bounded, convex domain contained in R2. Let u be a
viscosity solution of (5) such that u ∈ C(Ω) and u ≡ 1 on ∂Ω.

Then, there is at most one connected component of {|∇u| = 0} with nonempty
interior. Besides, this component is convex.

Proof. It will be done in two steps. We first prove that any connected component
of Ω\{|∇u| > 0} is convex and then we prove that there is at most one component.

Note. By Hopf’s lemma, {|∇u| = 0} is compact. By the maximum principle, for
all ν ∈ Sn−1, the sets {uν < 0} and {uν > 0} are both connected.

1st Step. Let C be a connected component of Ω \ {|∇u| > 0}. We shall prove that
C is convex.

Fix two points z0 and z1 in C and put r0 = min{dist(z0, C
c), dist(z1, C

c)}. Then,
for all z ∈ [z0, z1]

Br0(z) ⊂ C .

In fact, if this fails, there exist r′ < r0 and z′ ∈ [z0, z1] such that

Br′(z′) ∩ Cc 6= ∅ .

Let r(z) be any affine function on the segment z ∈ [z0, z
′], satisfying

r′ < r(z0) < r0 and r(z′) = r′ .

Then, there is a first point z′′ ∈ [z0, z1] (going from z0 to z1) such that

Br(z′′) ∩ Cc 6= ∅ ,

where r = r(z′′).
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Define

ν =
z1 − z0

|z1 − z0|

and denote by η the outward normal vector on ∂Br(z′′) at a point z1
0 ∈ Br(z′′)∩Cc.

Note that

〈η, ν〉 > 0 .

By Corollary 16, there are a cone V 1
0 , with vertex at z1

0 , and a ρ > 0 such that
V 1

0 ∩Bρ(z1
0) ⊂ {uν > 0}.

In a similar way, we can find a point z1
1 and a cone V 1

1 with vertex at z1
1 such

that

[z1, z
1
1 [⊂ C and V 1

1 ∩Bρ′(z1
1) ⊂ {uν > 0} ,

for some ρ′ > 0.
Let z0

0 and z0
1 two points satisfying

[zi, z0
i [ ⊂ C and z0

i ∈ {uν < 0}, i = 0, 1 .

Join z0 to z1 by a piecewise affine curve Γ0 contained in C, disjoint from [zi, z0
i ]

and from [zi, z1
i ] (i = 0, 1). Join z1

1 to z1
0 by a piecewise affine curve Γ+ in {uν > 0}.

The curve

Γ = Γ0 ∪ [z1, z
1
1 ] ∪ Γ+ ∪ [z1

0 , z0]

is a closed Jordan curve. By the minimum principle, the interior of Γ is contained
in {uν ≥ 0}. Then, z0

0 and z0
1 lie in the exterior of Γ.

On the other hand, since z0
0 and z0

1 are linked to Γ by the segments [z0, z
0
0 ] and

[z1, z
0
1 ] respectively, which lie on opposite sides of Γ, z0

0 and z0
1 are in different

components. This contradiction proves the claim.

Remark. A similar argument shows that C is equal to the connected component of
C in {|∇u| = 0}.

2nd Step. Suppose there exist a connected component K of {|∇u| = 0}, different
from C, such that for all ν ∈ Sn−1, both sets K ∩ {uν < 0} and K ∩ {uν > 0} are
not empty (if K◦ 6= ∅, then, by Corollary 17, K satisfies this property).

Notation. Denote by ν⊥ the π/2 anticlockwise rotation of ν. Define the north pole
of C (with respect to ν) by

PN (ν) = {ζ ∈ ∂C; ∀ z ∈ C, 〈z − ζ, ν⊥〉 ≤ 0}

and the south pole by

PS(ν) = {ζ ∈ ∂C; ∀ z ∈ C, 〈z − ζ, ν⊥〉 ≥ 0} .

Let {|∇u| = 0}◦− denote the closure of the interior of {|∇u| = 0}. The set

F (ν) =
(
{uν > 0} ∩ {uν < 0}

)
∪ {|∇u| = 0}◦−

is connected, and F (ν)\C has exactly two components, one adherent to PN , denoted
by FN (ν), and the other one adherent to PS , denoted by FS(ν).
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Obviously

FN (ν) = FS(−ν) .(17)

Since K is a connected component of F (ν), then K ⊂ FN (ν) or K ⊂ FS(ν).
This defines a partition of Sn−1

Θ = {ν ∈ Sn−1; K ⊂ FN (ν)} .

By (17), this partition is symmetric:

ν ∈ Θ⇐⇒ −ν ∈ Sn−1 \Θ .

In particular, both Θ and Sn−1 \ Θ are not empty. To reach a contradiction, we
shall show that Θ is open (then Sn−1 \Θ is also open).

Indeed, from Corollary 16, we conclude that for any ξ ∈ ∂C with the interior
ball property, and for any cone V ⊂ Cc, non-tangential to ∂C at ξ, ∇u/|∇u| tends
to the outward normal unit vector to ∂C at ξ, along V .

Now, fix ν ∈ Sn−1. Choose two points ξ0, ξ1 ∈ ∂C \ (PN ∪ PS), one on each
component, both having the interior ball property. Since 〈ν, ξ1 − ξ0〉 > 0, by the
above remark, we can extend the segment [ξ0, ξ1] from both ends, so that the new
segment, say [ξ′0, ξ

′
1], satisfies [ξ′0, ξ0[⊂ {uϑ < 0} and ]ξ1, ξ′1] ⊂ {uϑ > 0} for all ϑ in

a neighborhood of ν.
Join ξ′0 to the boundary of Ω by a Jordan arc Γ− such that Γ− ⊂ {uϑ < 0} for all

ϑ in a neighborhood of ν. Do the corresponding with ξ′1 by an arc Γ+ ⊂ {uϑ > 0},
ϑ in a neighborhood of ν.

Γ− ∪ [ξ′0, ξ
′
1] ∪ Γ+ divides Ω into two components, and K lies in one of them.

FN (ϑ) and FS(ϑ) lie in different components and FN (ϑ) stays in the same, for all
ϑ in a neighborhood of ν. This shows that Θ is open.

By Corollary 17, there is at most one component of Ω \ {|∇u| > 0}. This com-
pletes the proof of the proposition.
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