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Abstract— This brief manuscript provides an update on 

an S-band, digital-at-every-element polarimetric phased 
array radar designed to operate in the 2.7 – 3.1 GHz 
frequency band, which is being designed and built at the 
University of Oklahoma’s Advanced Radar Research 
Center (ARRC).  This is radar build 1 of 2 for our group in 
the S-band.  We are currently exploring a variety of near-
field panel measurements, which are presented in this 
paper.  For instance, given that digital at every element 
affords vast array flexibility, new innovative concepts 
associated with mutual coupling calibration are being tested 
and verified. 

Keywords—antenna, array, digital radar, digital 
beamforming, phased array,  polarimetric. 

I.   INTRODUCTION  
A mobile, S-band, dual-polarized phased array system is 

currently under development by the ARRC [1-4], as depicted in 
Fig. 1.  The design employs a tileable architecture, whereby each 
tile is comprised of a standalone 8 element x 8 element panel.  
Each element is dual polarized, with an independent digital 
waveform generator and independent digital receiver on each of 
the element’s horizontal (H) and verticle (V) channels.  
Element-level digital beamforming is a goal that has been sought 
after for many years by a variety of research groups.  Actual 
deployments are limited, but include:  Australia’s CEAFAR 
naval radar [5], the US Navy’s FlexDAR radar, Space Fence [6], 
the UK’s SAMPSON, Elta’s MF-STAR [7] and others.  
Recently, other researchers are making contributions at the 
device level or low-channel count prototype level to achieve 
this, which include [8-10]. Recently, the goal of the former 
DARPA Arrays at Commercial Timescales (ACT) program was 
to develop a common technology base for electronically scanned 
array (ESA) systems.  Under this program and partnered with 
Rockwell-Collins, the OU team and Rockwell-Collins were 
successful at developing a prototype IMPACT (Integrated 
Multi-use Phased Array Common Tile) to migrate towards a 
fundamentally digital architecture [11,12,13].  As a result, RF 
beamformers, down-converters, digitizers, equalizers, and some 
of the T/R module functionality were located within the 
IMPACT module to enable a more flexible FPGA-based digital 
backbone for the array. 

Fig. 1:  On the left an 8 x 8 element array panel, on the right the full array of 
32x32 elements  on an S-Band Mobile Radar. 

 

To provide some background: over the last 15 years, the ARRC 
has been engaged in the national Multifunction Phased Array 
Radar (MPAR) initiative, and subsequently the Spectrum 
Efficient National Surveillance Radar (SENSR) Program, as 
initially coordinated by the Federal Aviation Administration 
(FAA), the Department of Defense (DoD), the Department of 
Homeland Security (DHS) and the National Oceanic and 
Atmospheric Administration (NOAA).  Consequently, the 
ARRC is developing two scalable all-digital polarimetric S-
band phased array radars for mobile applications.  The arrays 
support a variety of operational radar modes, including 
Multiple-Input and Multiple-Output (MIMO) modes, mutual 
coupling calibration, etc.  The next section discusses our current 
work for the 2.7 – 3.1 GHz system, which leverages the team’s 
experience, e.g. [14]-[23].   

II.   ARCHITECTURE  
The mobile radar depicted in Fig. 1 has a fully digital 
architecture, and this system will consist of 1024 elements 
divided into 16 panels.  Each panel each houses eight 
“OctoBlades,” and each OctoBlade supports eight dual-pol 
antenna elements.  In brief, each OctoBlade is a line replaceable 
unit, and the left portion of Fig. 1 depicts the placement of one 
OctoBlade within a panel.  Fig. 2 depicts an Octoblade, and 
each OctoBlade drives an eight-element column of the panel’s 
high-performance antenna array with nearly ideal polarization 
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along the principal planes, consisting of a metal cooling plate 
with PCBs on each side to house a total of 16 GaN-based 
frontends (> 10W per element, per polarization), eight dual-
channel digital transceivers from Analog Devices, four front-
end FPGAs for processing, and two FPGAs for control.  In 
summary, with each panel having 64 elements (8x8), thus 16 
panels results in 1024 total radiating/receiving elements.   
 
 
 

 
 

Fig. 2:  Sideview of an OctoBlade.  Blind-mate connectors that interface with 
the antenna are depicted in the foreground. 

 

As depicted in Fig. 2, half of each OctoBlade principally 
contains the RF electronics, while the other half contains the 
FPGAs.  These two halves are separated by multi-pin connectors 
so that independent upgrades can be conveniently supported as 
needed.  The FPGA board is the data processing backbone of the 
Horus system.  It integrates the functionality of several COTS 
FPGA boards and custom adapters into the compact OctoBlade 
form factor.  The board has local DC power conversion, 
monitoring, and sequencing (single DC rail operation).  Its 
design incorporates two powerful Arria 10 FPGAs (model 
10AX 057N2 F40E2SG).  Each are clocked at the component’s 
desired maximum frequency of 275MHz.  Given the targeted 
systems’ waveform diversity requirements, algorithms will 
ideally be applied online, in real time and with minimal 
buffering and latency. Meeting these requirements ensures that 
the system maintains a large degree of flexibility (e.g., 
supporting pulse-to-pulse waveform changes) while avoiding 
impacts to the system’s maximum pulse-repetition frequency 
(PRF) or other time-sensitive system-level constraints [14]. To 
meet these requirements, a custom solution was developed using 
IntelFPGA’s high-level synthesis (HLS) tool to directly 
compute the model’s output, ultimately achieving optimal 
throughput with relatively low resource utilization and a high 
FMax [14].   

As depicted in the foreground portions of Fig. 2, the RF Front-
End PCB (with the SMA connectors) houses the GaN front-end 
modules (FEM), which are based on commercial, off-the-shelf 
(COTS) components with the exception of a moderate power 
GaN amplifier capable of putting out at least 10W from 2.7-3.1 
GHz.  Each FEM is packaged using traditional surface-mount-
technology (SMT) processing, with a few bond wires and a 
metal top.  The FEM, digital transceiver, and FPGA sections are 
all thermally connected through numerous thermal vias to a 
single, contiguous aluminum baseplate; this baseplate, in each 
OctoBlade, is in turn cooled by a liquid cooling path that is 
supported by a fractal-inspired distribution network.   

   At the same time, the OctoBlades are modular in the 
dimension normal to the array face, allowing for future 
exploration of different technologies at each layer; this is in 
contrast to a planar approach, where all of these electronics are 
integrated onto a single plane.  This cost vs. flexibility tradeoff 
has been carefully considered for this particular demonstrator, 
and the reduced overall risk associated with a “slotted card” 
architecture far outweighed the benefits of a panelized approach. 
The direct-conversion transceivers feature on-chip FIR 
equalization, built-in I/Q balancing, up to 100 MHz of 
bandwidth, and 16-bit resolution delivering 86 dB of dynamic 
range – far beyond what is needed for an element-level digital 
radar application of this sort.  The left portion of Fig. 1 depicts 
the relationship between an OctoBlade an a single panel.   

For normal radar operation, typical digital beamforming will be 
accomplished over a RapidIO network feeding the back of the 
panels, enabling beam-bandwidth products that far exceed what 
would be needed for a notional multifunction system (e.g., 200-
MHz beams at suitable dynamic range). To elaborate, RadioIO 
is a commercial open standard interface that supports high-
bandwidth, low-latency, packet-switched interconnect between 
multiple DSP processing elements, and between DSP processing 
elements and bulk memory. For the Horus team, RapidIO is used 
to distribute the reference clock, trigger, and control to two  
Octoblades, and RadioIO helps to form the distributed backend 
of the radar.   

The Horus radiating elements are designed based on the 
aperture-coupled stacked microstrip patch antenna with an 
independent polarization feed network. This radiating element 
enables excellent scanning performance over the frequency 
band (2.7 GHz to 3.1 GHz) and large e-scanning range (from -
45 deg. to 45 deg).  To achieve high port isolation (greater than 
50 dB), and cross-polarization isolation (greater than 37 dB), 
the antenna was designed for perfect symmetry.  In the design, 
the signals from the feed network are transferred using a cross-
slot on a ground plane. This ground plane separates both 
vertical and horizontal polarization. Each feeding network is 
coupled to the aperture, while the aperture then couples the 
energy to the driven patch. More details of the antenna design 
and scanning performance are presented in [23]. 
 

III.   PANEL MEASUREMENTS  
The team has established a small, dedicated near-field scanner 
for the panels (as given by Fig. 3), while a large near-field 
scanner for the truck’s multi-panel aperture is currently under 
construction. The calibration prior to the measurements is 
described as follows.  The team performed nearfield alignment 
30 consecutive times with 24 channels, performed mutual 
coupling alignment 30 consecutive times with 24 channels, and 
computed error statistics on all measured errors together to 
establish baseline nearfield alignment performance.  Pulse 
parameters: 1 µs pulse, 1 pulse per CPI, 12.3 MHz offset, and 
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Fig. 3:  Near-field panel measurement set-up.  Eight OctoBlades are installed 
in one panel.  Here, the orifice of the probe is facing the panel’s aperture.   
 
-20 dBFS transmit amplitude. Receive (RX) collections 
included: both polarizations, co/cross, +/- 45 deg.  Cross-pol 
looks very nice when steered at boresight, as well as azimuth 
steering.  Cross-pol degrades with elevation steering beyond 
about +/- 30 deg, and we are working on chamber 
improvements to rectifiy anomolies.  Figs. 4(a) to 4(d) show 
measusrements of RX H elevation, RX V elevation, RX H 
azimuth, and RX V azimuth, respectively. 

 

In addition to the traditional nearfield alignment calibration 
mentioned in the previous paragraph, the team has been 
recently working on mutual coupling calibration methods for 
all-digital arrays [24-28].  Consequently, Fig. 5 depicts recent 
Ludwig 3 AZ/EL near-field scans in receive mode (see [29] for 
coordinate definitions). These are among its first beamformed 
results, with many more expected as the system scales to its full 
size as OctoBlades are populated, tested, and integrated. 
 

 
Fig. 5: Recent near-field chamber results for an 8x8 panel as depicted in Fig. 3, 
showing well-behaved digital beamforming after calibration. 
 

Fig. 4:  a) Measured  radiation patterns in reception mode for H-polarization in the elevation cut. b)  Measured  radiation patterns in reception mode for V-
polarization in the azimuth cut. c) Measured  radiation patterns in reception mode for H-polarization in the azimuth cut. d) Measured radiation patterns in 
reception mode for V-polarization in the azimuth cut. 
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Testing was also performed to assess the impact of the presence 
of the nearfield probe on mutual coupling calibration, mainly to 
determine if it had any impact. The errors appear to be 
reasonably small, but enough to warrant avoidance if possible 
(examples shown in Figs. 6 and 7).   
 

 
 
Fig. 6:  TX mode – impact of the presence of the nearfield probe on mutual 
coupling calibration. 

 
 

 
 
Fig. 7: RX mode – impact of the presence of the nearfield probe on mutual 
coupling calibration. 

 
For mutual coupling calibration, it was found that higher 
transmit powers lead to calibration errors that are as much as 
doubled, and this is being investigated further. Saturated 
receivers are suspected.  An approach akin to a phase-noise 
metric has been used to filter out saturated receivers from the 
overall coupling matrix, leading to better results in initial 
testing.  It has been proven that alignment can be restored using 
our mutual coupling approach after power cycling the entire 
system following several iterations to resolve phase 
ambiguities.  This is still under development. 
 

 
 

III.  SUMMARY 
This short conference paper provides an update on a mobile 
radar that is under construction at the University of Oklahoma.  
It is unique since it allows fully-polarimetric TX and RX at 
every channel to support these primary functions:  radar, 
communications, real-time calibration, etc.  Based on the fact 
that COTS components are highly utilized principally by the 
communications industry, it is the world’s first large scale 

(>1000 elements) polarimetric, fully-digitized phased array 
radar system using mass market components.  A brief summary 
of possibilities for demonstrations with the Horus system:  
advanced aperture and waveform agility, performing many 
different tasks/objectives simultaneously;  multiple input 
multiple output (MIMO) radar, given multiple transmit and 
receive antennas; and exquisite control of polarimetry, such as 
single H, single V, simultaneous H&V for slant 45, LHC, RHC, 
or arbitrary polarization states.  While currently the system is 
under development as a prototype, it is expected that this all-
digital system will provide a demonstration platform for studies 
in (1) polarimetric phased array measurements, (2) advanced 
waveforms and beamforming, (3) polarimetric calibration 
techniques, and (4) level of digitalization, etc. It is expected that 
this research system can be used as a baseline for investigations 
of manufacturability, production costs, power consumption, 
and other issues. 
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