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Abstract

This paper concerns regularity properties of the mean-field theory of supercon-
ductivity. The problem is reminiscent of the one studied earlier by L.A. Caffarelli,
L. Karp and H. Shahgholian in connection with potential theory. The difficulty
introduced in this paper is the existence of several patches, where on each patch
the solution to the problem may have different constant values. However, using a
refined analysis, we reduce the problem to the one-patch case, at least locally near
“regular” free boundary points. Using a monotonicity formula, due to Georg S.
Weiss, we characterize global solutions of a related equation. Hence earlier regu-
larity results apply and we conclude the C1 regularity of the free boundary.

1. Introduction

In analyzing the evolution of vortices arising in the mean-field model of penetra-
tion of the magnetic field into super-conducting bodies, we end up with a degenerate
parabolic-elliptic system (see [8] for details). A simplified stationary model of this
problem (in a local setting), where the scalar stream function admits a functional
dependence on the scalar magnetic potential, reduces to finding u such that

�u = uχ{|∇u|>0}, u � 0, in Bρ(x0), (1)

where Bρ(x0) denotes the ball of radius ρ centered at ζ ∈ Rn), the equation is in
the sense of distribution, and appropriate boundary data are fulfilled.

Related problems have been studied in [1, 3, 8, 9]; see also the references
therein. However, less attention has been paid to the regularity nature of the solu-
tion function u and the free boundary ∂{|∇u| > 0}.

Existence of solutions of the Dirichlet problem associated with this equation
was studied in [7], where the C1,1 interior regularity and the local finiteness of the
(n − 1)-dimensional Hausdorff measure of the free boundary was established.
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In this paper, it is our prime goal to analyze the above problem in the context of
regularity theory. Using a refined analysis inspired by techniques introduced in [6],
we reduce the problem to the one-patch case, near “regular” free boundary points.

2. Definitions and known results

In most of the paper, we deal with functions u ∈ C1,1(Bρ(x0)), 0 < ρ � ∞,
x0 ∈ Rn, which satisfy the differential equation

�u = χ{|∇u|>0}, (2)

with

|∇u(x0)| = 0 , |u(x) − u(x0)| � c(1 + |x|2), (3)

where c is a fixed positive constant. The differential equation (2) is interpreted in
the sense of distributions.

Notation. We denote by P(c, ρ, x0) the class of functions u ∈ C1,1(Bρ(x0)) ver-
ifying (2) and (3). Global solutions to (2), (3) are denoted by P , i.e.,

P :=
⋃

x0∈Rn

⋃

c>0

⋂

ρ>0

P(c, ρ, x0).

The most relevant result we use from the regularity theory developed in [6] and
[7], is the following theorem.

Theorem 1 ([6] and [7]). For u ∈ P(c, ρ, x0), the following uniform C1,1 estimate
holds:

sup
Bρ/2∩{|∇u|>0}

|Diju(x)| � C,

where C is a constant depending only on c and n.
Moreover, the free boundary ∂{|∇u| > 0} has locally finite (n − 1)-Hausdorff

measure.

The proof given in [7] should be slightly changed (cf. [6]) so that it holds for
the whole class. However, the proof given in [6] works perfectly in this case.

Definition 1. By Theorem 1, for all u ∈ P(c, ρ, x0), �u = 1, in the classical sense,
in the set

� := int{|∇u| > 0}.
Remark 1. If u ∈ P(c, ρ, x0) then necessarily |∇u(x0)| = 0, even though x0
might not be in �c := Rn \ �. If u ∈ P is a global solution, x0 does not need to
be the origin and it can be translated since the equation is translation invariant. As
a matter of fact, in Section 6, the origin is carefully chosen using Lemma 7.
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3. Regularity of the free boundary

Before establishing our main result, we need the following definition.

Definition 2. The minimal diameter of a bounded set D ⊂ Rn, denoted MD(D), is
the infimum of distances between pairs of parallel planes such that D is contained
in the strip determined by the planes.

Definition 3. The density function of �c (at the origin) is defined by

δρ(u) = MD(�c ∩ Bρ)

ρ
.

Theorem 2. There exists a modulus of continuity σ such that if δρ0(u) > σ(ρ0) for
some ρ0 < 1/2, then for any u ∈ P(c, 1, x0), the boundary ∂{|∇u| > 0} is a C1

graph in B(x0, c0ρ0
2). Here c0 is a universal constant, depending only on c, and

the dimension n.

This theorem will be a consequence of the lemmas presented in the following
sections, combined with Theorem III in [6], and the main result in [4]. To apply
Theorem 2 to solutions of (1), we need the following lemma.

Lemma 1 ([7], Lemma 10). Assume that u is a non-negative solution to (1) and
x0 ∈ ∂{|∇u| > 0}. Then u > 0.

Although in Theorem 2 we consider the case of a constant right-hand side (con-
stant in the set {|∇u| > 0}), our analysis works perfectly for solutions of equation
(1). The constant c0 in the theorem will then depend on u(x0) as well. We leave the
small changes needed in this case to the reader, and continue our analysis in the
rest of this paper for the case shown in equation (2).

4. Further definitions and preliminary results

Given a function u ∈ P(c, ρ, x0), let us define the r-scaled function of u at x0
as

ur(x) := u(x0 + rx) − u(x0)

r2 , 0 < r � ρ, x ∈ B1(0).

Set also
�r = {

x ∈ Rn ; x0 + rx ∈ �
}
.

By Theorem 1, {ur}0<r�ρ is a relatively compact family. By the Ascoli-Arzela
theorem, given any sequence of positive numbers {r} tending to zero, there is a sub-
sequence rk → 0 such that urk converges uniformly on compact sets to a globally
defined function

u0 = lim
k→∞ urk ∈ P.

We refer to this function as blow-up of u at x0 (with respect to the sequence {rk}).



118 Luis Caffarelli, Jorge Salazar & Henrik Shahgholian

Although blow-ups at a fixed point x0 ∈ Rn might depend a priori on the
sequence rk → 0, we denote any blow-up at x0 by u0. This will cause no confusion
since we do not use more than one blow-up at the same time.

If u ∈ P , ur is defined for all r > 0, since the family {ur}r>0 is also relatively
compact, we may consider blowing up at ∞. We denote any blow-up at ∞ by u∞.
As above, this will cause no confusion and eventually ur → u∞ when r → ∞.

Lemma 2. If u ∈ P(c, ρ, x0), then any blow-up u0 at a free boundary point is
either:

– a half-space solution, i.e.,

u0(x) = 1
2 [(x · ν0)

+]2,

for some ν0 ∈ Sn−1, or
– a Homogeneous, degree-two polynomial P(x) with �P = 1.

Remark 2. Due to the non-degeneracy of solutions (see [7]), i.e.,

sup
Br(y)

u � γ r2 + u(y), y ∈ {|∇u| > 0},

blow-ups do not vanish identically. Here the constant γ depends only on the space
dimension.

Proof (of Lemma 2). We apply the monotonicity formula of Alt, Caffarelli &
Friedman [2] to the positive and negative parts of a directional derivative of u. To
fix the notation, set

ϕ(r, ν, u) = ϕ(r, x0, ν, u) = 1

r4

∫

Br(x0)

∣∣∇(Dνu)+
∣∣2

|x − x0|n−2

∫

Br(x0)

∣∣∇(Dνu)−
∣∣2

|x − x0|n−2 ,

where r > 0 and (Dνu)± denotes the positive and negative parts (respectively) of
the directional derivative of u in the direction ν ∈ Sn−1. (In what follows we skip
the x0 dependents of ϕ.) Fix a sequence rk → 0 such that

u0 = lim
k→∞ urk .

Since urk converges in W 2,p,

ϕ(s, ν, u0) = lim
k→∞ ϕ(s, ν, urk ).

Using a change of variable we readily verify that

ϕ(1, ν, ur) = ϕ(r, ν, u).

This and the monotonicity lemma (Lemma 5.1 in [2]; cf. also [6]), which says that
ϕ(r, ν, u) is monotone with respect to r , give

ϕ(s, ν, u0) = lim
k→∞ ϕ(srk, ν, u) := ϕ(0+, ν, u).

Hence, for any blow-up u0, ϕ(r, ν, u0) is constant with respect to r and

ϕ(r, ν, u0) = ϕ(0+, ν, u) � ϕ(r, ν, u).
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Remark 3 ([6]). Given v ∈ P ,

ϕ(r, ν, v) = 0, ∀r > 0, ∀ν ∈ Sn−1

if and only if, for some a ∈ R, v − a is a half-space solution.

Therefore if u0 is not a half-space solution, there is ν ∈ Sn−1 such that
ϕ(r, ν, u0) > 0. By the strong form of the monotonicity formula (see Lemma 2.2 in
[6]), �c = ∅. Applying Liouville’s theorem to the second-order partial derivatives
of u0, we see that u0 is a polynomial of degree two; the homogeneity comes from
the fact that u0(0) = |∇u0(0)| = 0. 	


In the same way we can prove the following lemma.

Lemma 3. If u ∈ P , then any blow-up u∞ at ∞ is either: a half-space solution or
a homogeneous, degree-two polynomial.

Using Remark 3 and the formula

ϕ(r, ν, u0) = ϕ(0+, ν, u) � ϕ(r, ν, u) � ϕ(∞−, ν, u) = ϕ(r, ν, u∞),

we can conclude as in the next proposition.

Proposition 1. For functions u ∈ P , the following hold.

– A blow-up u0 at x0 (∈ ∂�) is a half-space solution if and only if

ϕ(0+, ν, u) = 0, ∀ν ∈ Sn−1.

– If some blow-up u0 at the origin is a half-space solution, then any blow-up at
the origin is a half-space solution.

– If some blow-up u∞ of u at ∞ is a half-space solution, then u − u(x0) is a
half-space solution or a translation of one, x0 ∈ �c.

5. The local structure of the patches

In this section we will gather some technical lemmas that will be referred to,
quite frequently, in the rest of the paper.

First we need a definition. For ρ > 0, 0 < δ < 1, ν ∈ Sn−1, we define

C(ρ, δ, ν) :=
{
x ∈ Rn; 0 < |x| � ρ ,

x

|x| · ν � −1 + δ

}
.

Lemma 4. Assume that u ∈ P(c, 1, x0) and there exists a blow-up u0 at x0 that is
a half-space solution, i.e.,

u0(x) = 1
2 [(x · ν0)

+]2.

Then, there is ρ > 0 such that for all ν ∈ C(1, 1
2 , −ν0) ∩ Sn−1,

2Dνu − |∇u|2 � 0 in Bρ(x0).

In particular, u is non-decreasing in Bρ(x0), in the direction of ν, for all ν ∈
C(1, 1

2 , −ν0) ∩ Sn−1.
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Proof. It follows from the hypothesis that

Dνu0 = (x · ν0)
+ν0 · ν and |∇u0|2 = [(x · ν0)

+]2.

Hence, for all ν ∈ C(1, 1
2 , −ν0) ∩ Sn−1,

2Dνu0 − |∇u0|2 � 0 in B1 .

Fix a sequence rk → 0 such that

u0 = lim
k→∞ urk .

By uniform convergence, for all ε > 0, there is k0 ∈ N such that, for all k � k0
and ν ∈ C(1, 1

2 , −ν0) ∩ Sn−1, we have

2Dνurk − |∇urk |2 � −ε in B1 .

Since

−�(2Dνurk − |∇urk |2) = 2|∇2urk |2 � 2

n2 in B1 ∩ �rk ,

we are in a position to apply the same argument as the one in the proof of Lemma
4.2 in [6] to conclude that there is a universal constant ε0 (independent of urk and
ν) such that ε � ε0 implies

2Dνurk − |∇urk |2 � 0 , ∀x ∈ B 1
2
, ∀ν ∈ C(1, 1

2 , −ν0) ∩ Sn−1,

as soon as we choose k big enough. Taking ρ = rk
2 , the lemma is proved. 	


Lemma 5. Under the assumptions and notation of Lemma 4, for ρ as in Lemma 4
we have

x0 + C(ρ, 1
2 , ν0) ⊂ {

u � u(x0)
}
.

Proof. For all (fixed)
x ∈ C(ρ, 1

2 , ν0),

the function
τ → u (x0 + (1 − τ)x) τ ∈ (0, 1)

is non-decreasing. Indeed,

∂

∂τ
(u(x0 + (1 − τ)x)) = −x · ∇u(x0 + (1 − τ)x) = |x|Dνu(x0 + (1 − τ)x),

where
ν = −x

|x| ∈ C(1, 1
2 , −ν0) ∩ Sn−1.

By Lemma 4, the derivative is non-negative and the lemma is proved. 	

Lemma 6. Under the assumptions and notation of Lemma 4, there is ρ′ > 0 (ρ′ =
ρ′(ρ)) such that

x0 + C(ρ′, 1
3 , ν0) ⊂ �c.
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Proof. Suppose there is a sequence {xk} ⊂ C(1, 1
3 , ν0) ∩ � such that ρk =

|xk| → 0. Fix a constant τ > 0, such that for all k ∈ N,

Bτρk
(xk) = {

y; |y − xk| � τρk

} ⊂ C(1, 1
2 , ν0).

By the quadratic growth of u in �, there is a sequence {yk} such that

yk ∈ Bτρk
(xk) ∀k,

and

uρk
(ρk

−1yk) − uρk
(ρk

−1xk) � γ (4)

for some constant γ > 0, independent of k.
Now, by Proposition 1, any blow-up of u at x0 is a half-space solution. In

particular
lim inf

r→0
ur(x) � 0 ∀x ∈ Rn.

On the other hand, by Lemma 5,

lim sup
r→0

ur(x) � 0 , ∀x ∈ C(∞, 1
2 , ν0).

Hence, for all x ∈ C(∞, 1
2 , ν0),

lim
r→0

ur(x) = 0.

Since {ρk
−1yk} and {ρk

−1xk} are two bounded sequences contained in
C(2, 1

2 , ν0),
lim

k→∞ uρk
(ρk

−1yk) − uρk
(ρk

−1xk) = 0,

which is a contradiction to (4). 	


6. Global solutions with compact �c

In this and the next section, we characterize global solutions. This characteriza-
tion is useful for a further study of convexity properties. It is shown that any global
solution to (2), with quadratic growth, either solves

�u = χ{u>a} in Rn, u � a, (5)

for some a ∈ R, or it is a degree-two polynomial.
Equation (5) was treated by Caffarelli in relation with the obstacle problem;

see [5] and the reference there. The above shows that, as far as global solutions are
concerned, (2) reduces to the one-patch problem treated in [6]: Given u ∈ P , there
is a ∈ R, such that

�u = χ� in Rn

u = a , |∇u| = 0 in �c.
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Theorem 3. Let u ∈ P and assume that �c is non-empty and compact. Set

sup
x∈�c

u(x) = a.

Then
u(x) � a ∀x ∈ Rn.

In particular, according to [5] (see also [4]), �c = {u = a} is convex.

Before we prove the theorem, we need several lemmas. Changing u by u − a,
we can assume, without loss of generality, that a = 0.

Lemma 7. Let u ∈ P and assume that �c is a non-empty compact set. Furthermore
assume

sup
x∈�c

u(x) = 0. (6)

Then for a suitable choice of the origin, for all x �= 0 fixed, the function

r −→ u(rx)

r2

is non-decreasing.

Proof. Denote by V the Newtonian potential of �c, i.e.

V (x) =
∫

�c

cn

|x − y|n−2 dy.

This is a bounded super-harmonic function in Rn. Since V is harmonic in �,
due to the maximum principle there is at least one point ζ0 ∈ �c such that

V (ζ0) � V (x) , ∀x ∈ Rn.

Choose the origin at ζ0.
Since

�(u − V ) = 1

in the sense of distributions and all second-order partial derivatives of u − V

are bounded harmonic functions, the Hessian of u − V is a constant matrix, by
Liouville’s theorem.

Hence u − V is a polynomial of degree two. Set

P(x) = u(x) − V (x) − u(0) + V (0).

Note that |∇V (0)| = |∇u(0)| = 0. Hence P(0) = |∇P(0)| = 0, and this
implies that P is homogeneous.

Now consider the function

h(x) = x · ∇u(x) − 2u(x) .
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The function is continuous in Rn, and for all x �= 0 fixed,

d

dr

(
u(rx)

r2

)
= 1

r3 h(rx).

We will show that h is non-negative in Rn. In fact

h(x) = −2u(x) � 0 ∀x ∈ �c .

On the other hand, by the homogeneity of P ,

h(x) = x · ∇V (x) − 2V (x) + 2V (0) − 2u(0)

then
lim|x|→∞ h(x) = 2V (0) − 2u(0) � 0 .

Since h harmonic in �, by the minimum principle, h is positive in �. 	

Corollary 1. Under the hypothesis of Lemma 7, for all κ � 0, the set {u � κ} is
star-shaped with respect to the origin.

Remark 4. The family ur(x) = u(rx)/r2 indexed by r is not relatively compact,
since a priori u(0) �= 0. Therefore, the monotonicity given by Lemma 7 does not
mean that the blow-up at the origin is convergent.

Lemma 8. Let u ∈ P and assume (6). Then any blow-up u0 of u at x0 ∈ ∂�0,
where �0 := �c ∩ {u = 0}, is a half-space solution.

Before we prove this lemma, we need a result concerning a balanced energy
functional, introduced by G.S. Weiss. We shall use a slightly different version of
Weiss’ formula. Define

�(r, u, x0) = r−n−2
∫

Br(x0)

(
|∇u|2 + 2u

)
− r−n−3

∫

∂Br (x0)

2u2.

The following result is basically due to Weiss, see [10]. For the reader’s con-
venience, we also give a proof.

Lemma 9 (Weiss). Let u ∈ P and assume (6). Then for all x0 ∈ Rn, �(r, u, x0) is
non-decreasing with respect to r .

Remark 5. The hypothesis (6) is crucial for the proof of Lemma 9. The lemma
fails if we replace u by u − u(x0), unless u(x0) � 0. We can use this lemma in
conjunction with blow-ups only when x0 ∈ ∂�0. Nevertheless, it is convenient to
write �(r, u, x0) in terms of

ur(x) = u(x0 + rx)

r2 , r > 0.

In that case

�(r, u, x0) =
∫

B1(0)

(
|∇ur |2 + 2ur

)
−

∫

∂B1(0)

2ur
2 .
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Proof of Lemma 9. We shall prove that the derivative of �(r, u, x0) with respect
to r is non-negative.

Indeed,

�′(r) =
∫

B1

(
2∇ur · ∇ur

′ + 2ur
′) −

∫

∂B1

4urur
′ ,

where

ur
′(x) = d

dr
ur(x) = 1

r
(∇ur · x − 2ur) .

Using integration by parts,
∫

B1

2∇ur · ∇ur
′ =

∫

∂B1

2(∇ur · η)ur
′ −

∫

B1

2�urur
′ .

Since
∇ur · x = rur

′(x) + 2ur

and η = x on ∂B1,

�′(r) =
∫

∂B1

2r(ur
′)2 +

∫

B1

2(1 − χ�r )ur
′.

The first integrand above is non-negative. The second one is also non-negative since
we have assumed u(x) � 0 for all x ∈ �c. 	


Since ur
′ ≡ 0 if and only if u is homogeneous of degree two, the above expres-

sion leads to the following important conclusion, already found in Weiss’ paper for
the obstacle problem.

Corollary 2 (Weiss). Under the hypothesis of Lemma 9, the function

v(x) = u(x0 + x)

is homogeneous of degree two if and only if �(r, u, x0) is constant with respect to
r .

Remark 6. Let P be a degree-two homogeneous polynomial, with �P = 1. Then
�(r, P, 0) does not depend on r nor on P .

By this lemma we can set

αn = �(r, P, 0) = 1

2

∫

B1

x2
1 .

where x1 is the first coordinate component of x ∈ B1. This is twice the value of
�(r, U, 0), when U is a half-space solution,

�(r, U, 0) = αn

2
.
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Remark 7. Let u ∈ P and x0 ∈ ∂�. Since by uniform convergence,

�(r, u0, 0) = �(0+, u, x0) � �(r, u, x0) � �(∞−, u, x0) = �(r, u∞, 0)

and any blow-up or blow-down is homogeneous, we are left with only three possi-
bilities:

�(0+, u, x0) = �(∞−, u, x0) = αn

2
,

or
�(0+, u, x0) = αn

2
and �(∞−, u, x0) = αn,

or
�(r, u0, 0) = �(∞−, u, x0) = αn .

Proof of Lemma 8. If u0 is a polynomial, then �(0+, u, x0) = αn. Since αn is
the maximum value of �(r, u, x0),

�(r, u, x0) = αn ∀r > 0.

This means that u itself is a polynomial. This contradicts the assumption
�c �= ∅. 	

Proof of Theorem 3. Recall from Lemma 7 that the origin is now fixed, and be-
longs to �c. If 0 ∈ ∂{u � 0}, then 0 ∈ ∂�0. By Lemma 7 and Lemma 8 ,

lim
r→0

ur(x) = inf
r>0

ur(x) = u0 � 0.

The theorem is proved in this case.
If x0 is an interior point of {u � 0}, then by Corollary 1, the interior of {u � 0}

is connected.
By Lemma 8 and Lemma 6, �0 contains a truncated cone. Since u is subhar-

monic in the interior of {u � 0} and the interior of �0 �= ∅, by the maximum
principle,

{u � 0} = {u = 0}.
This completes the proof of the theorem. 	


7. Global solutions with unbounded �c

Theorem 4. Let u ∈ P such that int(�c) is non-empty and unbounded. Then, there
is a ∈ R such that u � a and �c = {u = a}.

In particular, according to [5] (see also [4]), �c is convex.

Proof. Suppose that some blow-up u∞ of u at infinity is a half-space solution.
Then, by the third statement in Proposition 1, u − u(x0) is a half-space solution
(modulo translation), ∀x0 ∈ �c. And the theorem follows in this case.

Now, if no blow-up at infinity is a half-space solution, then by Lemma 3 we
may assume that any blow-up u∞ is a polynomial. The assumption int(�c) �= ∅
prevents from u from being a polynomial, except in the trivial case u ≡ a.
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Since �c is unbounded, there exists a sequence xj ∈ ∂� tending to ∞. In this
case we may scale by Rj = |xj | so as to obtain, in the limit, a global solution with
a free boundary x̃ on the unit sphere. By homogeneity then the ray rx̃ must lie in
the free boundary. It thus follows that Deu∞ ≡ 0, for e = x̃/|x̃|. Hence

0 � ϕ(r, e, u) � ϕ(∞, e, u) = ϕ(1, e, u∞) = 0,

and we conclude that Deu does not change sign for e = x̃/|x̃|, we assume, without
lost of generality, Deu � 0 (otherwise we replace e by −e).

Now, for some x0 with Br(x0) ⊂ {|∇u| = 0}, we can show that

{x − se : x ∈ Br(x0), s > 0} ⊂ {|∇u| = 0}.
In particular the sequence um(x) := u(x−me)−u(x0) is bounded (for any fixed x)
and monotone. Thus it has a limit as m tends to infinity. It follows, moreover, that
the limit function is independent of the e-direction. Therefore we will have an
(n − 1)-dimensional solution û.

First, suppose the lower-dimensional function û is either a half-space solution,
or falls into the hypotheses of Theorem 3. Then the lower-dimensional solution
is convex and non-negative. Since Deu � 0 we conclude that u � 0 (or more
correctly u(x) − u(x0) � 0).

Due to the convexity of û, the positivity of u, and the fact that Deu � 0, we
must have {|∇u| = 0} connected. Hence we are reduced to the case of u = u(x0)

in the set {|∇u| = 0}, and we can apply [6] to conclude that u is convex.
Next, if the lower-dimensional solution û is neither of the above it must fall into

the third category analyzed above. Hence we repeat our argument and translate û

again in a new direction and reduce the dimension further. Finally, by induction,
we need to classify the one-dimensional solutions. However, the one-dimensional
problem is solved by x2

1/2, (max(0, x1))
2/2, or two separated solutions of the lat-

ter. Obviously any rotation of these are also possible solutions. And these all are
non-negative solutions. 	


8. Proof of Theorem 2

By the classification of global solutions, made in Sections 6 and 7, we have
already proved that the global solutions of our problem coincide (in nature) with
that of [6] and hence the proof of Theorem 2 follows the same pattern as that of
Theorem III in [6].

The original result (see [4] or [5]) for non-negative solutions in the class
P(c, 1, x0), provides us with the following lemma.

Lemma 10. Given a positive number ε, there exists tε such that if u ∈ P and
δ1(u) � ε, then in B(0, t) (∀t < tε) the boundary of � is the graph of a C1 func-
tion (uniformly for the class) and u is (εt2)-close to a half-space solution there.

Now a simple proof of Lemma 10 can be given based on compactness, a contra-
dictory argument, and the main result in [4]. Observe also that by classification of
global solutions in Section 6 and 7, u ∈ P is non-negative. Therefore [4] applies.
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Lemma 11. Let ε, s > 0, and u ∈ P(c, 1, x0). Assume that for some ν0 ∈ Sn−1,

sup
x∈Bs(0)

∣∣∣∣u(x0 + x) − 1

2
[(x · ν0)

+]2
∣∣∣∣ � εs2.

Then
sDν0u − |∇u|2 � 0 in Bs/2(x0),

provided ε is small enough.

The proof of the above lemma follows the same lines as that of the proof of
Lemma 4.

For the following lemma, recall Remark 2, and the constant γ there, and suppose
0 < ε < γ/2.

Lemma 12. For 0 < ε < γ/2, there exists ρε > 0 such that if, for some ρ � ρε

and u ∈ P(c, 1, x0), δρ(u) � ε, then ( for some direction ν0 = ν0(u))

x0 + C(ρ, 1
3 , ν0) ⊂ �c ∩ Bρ(x0) ⊂ {u = u(x0)}, (7)

and

u � u(x0) in Bρ(x0). (8)

Proof. Let ρ1 � tε/2 (with tε as in Lemma 10), and suppose δρ1(u) � ε. Hence
the hypothesis in Lemma 11 is fulfilled. In particular, we may use Lemmas 10 and
11, to observe that hypotheses in Lemmas 5 and 6 are fulfilled. Hence the first
inclusion in (7) follows in a similar fashion to that in the proof of Lemmas 5 and 6.
Here, however, we should notice the uniformity due to Lemmas 10 and 11, so that
ρ1 is independent of u.

Now the assumption δρ1(u, x0) � ε implies

δ2ρ1(u, y) � ε/2 ∀ y ∈ ∂{|∇u| > 0} ∩ Bρ1(x0),

and an argument similar to that above applies. Hence we have

y + C(ρ1,
1
3 , νy) ∈ �c, ∀ y ∈ ∂{|∇u| > 0} ∩ Bρ1(x0).

Since the opening of the cones are large enough they must overlap. This, in turn,
implies that u is constant in �c. Finally (8) follows by applying Lemma 11, and
using (7). 	


Now from the above lemma it follows that u does not change sign, the set
{|∇u| = 0} is connected and the free boundary ∂{|∇u| > 0} is locally (in a
uniform neighborhood, depending on the modulus of continuity σ(r)) a Lipschitz
graph. The rest now follows as in [5], or [6].
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