
An Ultrawideband UAV-Based Metrology
Platform for In-situ EM Testing of Antennas,

Radars, and Communication Systems
Jorge L. Salazar-Cerreno , Syed S. Jehangir , Antony Segales, Nafati Aboserwal , and Zeeshan Qamar

Advanced Radar Research Center (ARRC) & School of Electrical and Computer Engineering (ECE)

The University of Oklahoma, Norman Oklahoma, USA

Abstract— In this paper, an ultrawideband in-situ metrology
UAV system to characterize antennas in the far-field region is
presented. The proposed system uses a customized antenna probe
designed to operate from 2.5 GHz to 32 GHz. In comparison with
previous works, this system has a new probe with a unique design
to obtain better match in the co-polar beam patterns and high
cross-polarization isolation, ideal for testing dual-polarized radar
and communication systems. The UAV test system is developed
taking into account the electromagnetic interaction between the
UAV and RF system. High position accuracy, flight stability,
and excellent dual-polarization performance are key features in
this new system. Design trade-offs of the proposed system for
various applications, and its preliminary results, indicate this new
concept is suitable for in-situ antenna measurements of radar and
communication systems.

Index Terms—Antenna, array, calibration, metrology, far-field,
phased array radar, radome, reflections, wet radome, SATCOM,
5G, UAV, UAS,

I. INTRODUCTION

Aperture and antenna arrays used for radar and commu-
nication systems are commonly characterized and tested in
a controlled environment such as outdoor or indoor antenna
test ranges. In most of the cases, the antenna under test
(AUT) is characterized alone without other subsystems such
as front-end, radome, pedestal, etc. When the antenna aperture
is integrated with other radar or communication sub-systems
and put it in operation, antenna performance is not the same
as tested in a controlled environment. Antenna performance
degradation due to electromagnetic interference (EMI) be-
tween an antenna and a sub-system can be worse if the
system is operating under adverse environmental conditions.
Rain, ice, snow, dirt, pollution, temperature, ground reflection,
clutter can impact gain, polarization, side-lobes, and main
beam direction. The need for in-situ characterization of the
antenna for a radar or communication system that is operating
in its real environment, is required to guarantee acceptable
performance of the system in real operational environment.
[1], [2].

Radar and communication systems use a small portion
of operational commercial frequency bands (<10% fractional
bandwidth). However, depending on the application, this can
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Fig. 1: Picture of the ultrawideband (2.5 GHz to 32 GHz)
metrology UAV-based platform for in-situ testing of radars and
communication systems during test in the OU indoor far-field
chamber.

be anywhere in the frequency spectrum from 1 GHz to
90 GHz. Some examples in the radars bands in the U.S include
the air traffic control (ATC) and DOD early warning defense
uses from 1.215 GHz to 1.390 GHz, maritime and weather
radar uses 2.7 GHz to 3.1 GHz. DOD surveillance radar
uses from 3.1 GHz to 3.6 GHz. NOAA weather radar, FAA
TDWR uses 5.5 GHz to 5.9 GHz. Airborne radars operate
in five different bands (8.5 GHz to 10.5 GHz, 13.25 GHz to
14.2 GHz, 15.4 GHz to 17.3 GHz, 24.05 GHz to 24.65 GHz,
31.8 GHz to 36 GHz). Airborne fire control, beacons, cloud
radars, and synthetic vision radar operates from 92 GHz to
100 GHz [3].

In the case of weather radars, the most common radars
operate below 10 GHz. In most of the cases, weather radars use
dual-polarization capabilities, that enable hydrometer classifi-
cation. The need of high performance dual-polarized antennas
with co-polar pattern mismatch below ± 0.1 dB and cross-
polarization level lower than -40 dB is critical for this mission.
To achieve such performance over ±45 degrees field of view,
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it is quite challenge using phased array antennas, specially
when the radar is deployed in the field [4]–[7]. The field of RF
measurement and characterization using UAVs, ranging from
micro and small to medium and large frames, has seen a fast-
paced evolution in the past decade, in virtue of the increased
availability of commercial off-the-shelf flight solution suites
with high degree of precision and performance at lower costs
[8]–[28].

The predecessors to this work have explored the feasi-
bility of performing accurate UAV-based far-field antenna
measurements through simulations and by establishing design
guidelines to mitigate many error sources [29], and studying
the effects of coupling between the UAV structure and the
probe antenna through EM simulations and indoor anechoic
chamber characterizations [30] for the selection of the best
type of probe antenna that meets the mission requirements
[4].

This work proposes a UAV platform integrated with a
single source probe antenna to enable full characterization and
calibration of communication system and radar systems that
operate in a range of frequency between 2.5 GHz to 32 GHz.
The new probe has unique features that enable very similar
electromagnetic performance in the whole frequency range.
This paper is organized in five sections. Section II, describes
the proposed system. Section III discusses the main design
trade-offs including platform dimensions, endurance, payload,
induced platform scattering and performance. The section IV
presents preliminary simulated and measured results. Finally,
Section V summarizes and highlights the most remarkable
findings and impact of these results.

II. SYSTEM DESCRIPTION

The proposed metrology system, shown in Fig. 1, was
developed to provide an UAV platform with a single front-
end equipment to perform in-situ antenna patterns, calibration
of communication, and radar systems that operate in the
frequency range from 2.5 GHz to 32 GHz. The system is
mainly composed of three subsystems. The UAV platform, the
gimbal, and the front-end subsystem which is composed of
an ultrawideband dual-polarized antenna probe interconnected
with a CW transmitter source. The summary of the system
specifications is listed in Table I.

1) UAV platform: The UAV platform is the hexacopter
DJI Matrice 600P that provides a maximum flight time from
20 min to 60 min with three sets of interchangeable batteries.
This platform provides excellent stability for a maximum
payload of 2 kg. The system was tested with a wind load up to
20 mph providing excellent test results. Real-time kinematic
differential GPS (RTK D-GPS) is integrated with the UAV
platform, and it provides position accuracy lower than 2 cm.

2) Gimbal: The DJI Ronin-MX gimbal, which is used to
carry the antenna probe, is very stable and flexible for accurate
position alignment between the AUT and the probe. Indepen-
dent IMU’s make this gimbal to be accurate. This gimbal
can be controlled automatically and manually or by point-of-
interest (POI) through the mission planner application, with
an accuracy of 0.02◦.

TABLE I: System specifications.

Category Specifications Value

UAV Model/Maker Matrice 600P/DJI
Platform Dimensions 1.66 m x 1.52 m x 0.727 m

Weight (no payload) 10 kg
Max. takeoff weight 15.5 kg
Position accuracy GPS: ±5.5 m to ±0.5 m
Position accuracy RTK: ±1 cm to ±2.0 cm
Max. angular velocity Pitch: 300◦/s, Yaw: 100◦/s
Max. pitch angle 25◦/s
Max. ascent speed 5 m/s
Max. descent speed 3 m/s
Max. serv. ceiling 2500 m
Hovering time 20 min (up 1 hr with 3 sets of batt.)
Operating temp. -10◦C to 40◦C

Gimbal Model/Maker Ronin-MX/DJI
Operation modes Free, Follow, FPV
Dimensions 28 cm x 34 cm
MIU Independent
Connectivity Bluetooth and USB connections
Operation. Freq. 2.4 GHz
Running time 3 hrs
DC voltage 12 VDC
Operating temp. -15◦C to 50◦C

Antenna Model/Maker UWP232/PAARD-OU
Probe Frequency 2.5 GHz-32 GHz

Beamwidth 100◦-20◦ (E-, H-planes)
Gain 6 dB-17 dB
Return loss (RL) 12 dB @ (2.5 GHz-32 GHz)
Dimensions 10 cm x 4 cm x 4 cm
Weight < 1.5 lb

Transmitter Model/Maker Windfreak technologies
Freq. operation 10 MHz to 32 GHz
Tx. power 20 dBm (CW)
Dynamic range 50 dB
Amplitude resol. 0.01 dB
Phase resol. 0.01◦

Dimensions 4 cm x 4 cm x 2 cm
DC voltage 12 VDC
Weight < 0.1 lb

3) Transmitter: On the gimbal, a CW transmitter source
and antenna are used for AUT test in receive mode. The
transmitter is a two-channel synthesizer that generates signals
from 10 MHz to 14 GHz. An active multiplier is used to
expand the frequency up to 34 GHz with an output power up
to 30 dBm. High dynamic range and amplitude (0.001 dB),
and phase resolution ( 0.01◦), make this transmitter an ideal
candidate for this UAV metrology concept.

4) Antenna probe: In the proposed system, the used an-
tenna is designed to perform symmetric radiation patterns
in the E- and H-planes with a beamwidth between 100◦

for the lowest frequency (2.5 GHz) and 20◦ for the highest
frequency (32 GHz). The proposed antenna used as a probe
is a lens corrected quad-ridged conical corrugated antenna.
This antenna was designed for high compactness and low
weight, ideally to be carried in the Matrice 600P and Robin
MX/DJI gimbal. Half-power beamwidth (HPBW) below 40◦

is ideal to minimize degradation of the cross-polarization
isolation and ripples in the co-polar patterns produced by
induced electromagnetic scattering in the UAV platform. Fig. 2
shows the geometry models of the proposed and commercial
probes, realized gain, and E-plane and H-plane half power
beamwidth (HPBW) comparison. Table II, summaries the
overall performance of the proposed antenna in comparison
with the commercial Quad-ridged antenna.
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b)

Fig. 2: Illustration of the antenna probes, and performance comparison of the proposed and commercially available ridged horn
antennas [31], [32] (a) side views of the ultrawideband antenna probes (b) realized gain versus frequency (c) HPBW versus
frequency in the E-plane (d) HPBW versus frequency in the H-plane.

TABLE II: Performance summary of the proposed and commercially available ridged antennas.

Freq. (GHz) HPBW (◦) Gain (dB) RL (dB) Size (in) Weight (lb)
Probe Type (fmin/fmax) E-plane (fmin/fmax) H-plane (fmin/fmax) (fmin/fmax) (x-y-z)
Dual Ridged 2/32 110/22 142/18 3/16.5 < -10 4.3 x 4.13 x 4.13 1.1
Quad Ridged 2/32 110/23 165/23.5 2.2/16 < -10 4.3 x 4.13 x 4.13 0.53
Proposed 2.5/32 60/29 100/29 6/17 < -12 4.3 x 4.3 x 4.4 1.5

III. DESIGN TRADE-OFFS

Accurate in-situ antenna pattern characterizations using
drones are very popular nowadays. In most of the cases, drones
are customized for each application that typically operates
for small frequency ranges (< 10% fractional bandwidth)
to obtain accurate antenna patterns of a deployed systems.
The main disadvantage of using narrow band probes for a
particular application is the dedication of a UAV platform
and probe for a specific mission. Assigning a UAV platform
for a single task is not cost effective. In the other hand,
reusing the same UAV platform for other bands requires
tedious characterization and RF calibration of the probe with

UAV platform to guarantee good antenna test during flight.
Ideally, a single probe mounted on UAV that operates in a
wide frequency bandwidth is desirable. One of the biggest
limitations of using a ultrawideband antenna as a probe is
the antenna beamwidth variability with frequency. Commer-
cial antennas with broadband characteristics, such as single
or double ridged horn antennas may satisfy the bandwidth
requirements. However, RF performance is not ideal for UAV
test measurements. The half-power beamwidth changes from
160◦ to 40◦ over a frequency range from 1 GHz to 30 GHz
and cross-polarization isolation of -25 dB (without the drone)
is degraded due to induced electromagnetic scattering from the
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TABLE III: Performance comparison between proposed and comercial probe with UAV-platform.

Vertical polarization (V-pol) Horizontal polarization (H-pol)
Probe type Parameter 3 GHz 10 GHz 20 GHz 30 GHz 3 GHz 10 GHz 20 GHz 30 GHz

HPBW (E-plane) 68◦ 52◦ 38◦ 22◦ 68◦ 52◦ 38◦ 22◦

HPBW (H-plane) 135◦ 55◦ 38◦ 22◦ 135◦ 55◦ 38◦ 22◦

X-pol (E-plane)1 -25 dB -25 dB -23 dB -22 dB -25 dB -25 dB -23 dB -22 dB
X-pol (H-plane)1 -27 dB -28 dB -28 dB -27 dB -27 dB -28 dB -28 dB -27 dB

Quad ridged ICoR (E-plane)2 ±1.2 dB ±0.47 dB ±0.45 dB ±0.2 dB ±1.13 dB ±0.48 dB ±0.25 dB ± 0.25 dB
ICoR (H-plane)2 ±1.25 dB ±0.5 dB ±0.33 dB ±0.13 dB ±1.5 dB ±0.65 dB ±0.34 dB ±0.22 dB
IXp (E-plane)3 +6 dB +7 dB +4 dB +2 dB +7 dB +3 dB +5 dB +5 dB
IXp (H-plane)3 +11 dB +13 dB +4 dB +6 dB +5 dB +6 dB +3 dB +2 dB

HPBW (E-plane) 60◦ 32◦ 30◦ 29◦ 60◦ 32◦ 30◦ 29◦

HPBW (H-plane) 100◦ 38◦ 31◦ 29◦ 100◦ 38◦ 31◦ 29◦

X-pol (E-plane)1 -53 dB -50 dB -52 dB -40 dB -53 dB -50 dB -52 dB -38 dB
X-pol (H-plane)1 -50 dB -49 dB -45 dB -40 dB -50 dB -49 dB -45 dB -40 dB

Proposed ICoR (E-plane)2 ±0.16 dB ±0.35 dB ±0.46 dB ±0.55 dB ±.1 dB ±0.2 dB ±0.16 dB ±0.34 dB
ICoR (H-plane)2 ±0.03 dB ±0.22 dB ±0.42 dB ±0.45 dB ±0.07 dB ±0.25 dB ±0.08 dB ±0.15 dB
IXp (E-plane)3 +10 dB +11 dB +12 dB +14 dB +5 dB +8 dB +9 dB +13 dB
IXp (H-plane)3 +10 dB +11 dB +12 dB +14 dB +5 dB +8 dB +9 dB +13 dB

1 X-pol represents the maximum cross-polarization isolation in the HPBW across the frequency range.
2 ICoR represents the maximum degradation in the co-polarization of the antenna mounted on the UAV in the HPBW across the frequency range.
3 IXp represents the maximum degradation in the cross-polarization of the antenna mounted on the UAV in the HPBW above -50-dB XP level, across the frequency range.

Fig. 3: Representation of the maximum induced ripples in
the co-polar patterns (ICoR) and maximum induced cross-
polarization (IXp) due to the UAV platform.

UAV platform, specially when the lower frequency is used.
For lower frequencies than 3 GHz, UAV platform with larger
payload is required to carry larger probes. This limitation in the
payload will compromise flight endurance, probe alignment,
and flight stability. In this paper, a lens corrected quad-ridged
conical corrugated antenna is designed for high compactness
and low weight, ideally to be carried in the Matrice 600
and Robin MX/DJI gimbal. Table II and III, summarize the
overall performance of the proposed antenna in comparison
with commercial Quad-ridged antenna.

IV. PRELIMINARY RESULTS

Numerical simulations of the proposed antenna with and
without the UAV platform (Matrice 600) and gimbal were
performed using Ansys HFSS. The HFSS integral equation
(HFSS-IE) solver that uses the method of moments (MoM)

was used to solve for the sources or currents on the surfaces
of conducting and dielectric parts of the drone. HFSS-IE with
adaptive refinement meshing is effective for radiation and
scattering studies of large conducting structures. Table III,
summarizes the overall performance of the proposed probe
fully characterized with UAV platform. The maximum induced
ripples in the co-polar patterns (ICoR) and maximum induced
cross-polarization (IXp) due to the UAV platform as shown
in Fig. 3 were calculated in E-plane and H-plane for each
polarization in both antennas. Comparison between proposed
and commercial probe with UAV-platform shows significant
improvement of UAV metrology system. Lower ripples in
the co-polar patterns lower is the contamination in the cross-
polarization patterns. This is mainly attributed to the controlled
beamwidth and lower cross-polarization performance of the
proposed antenna. Due to the improved radiation characteri-
zation and performance of the proposed antenna, the induced
degradation in the cross-polarization levels is smaller than
that in the case of the commercial antennas. The proposed
probe presents better performance compared to the commercial
antenna across the operating bandwidth.

V. CONCLUSION

A new antenna probe was designed and and fully character-
ized with a UAV platform. This novel antenna enables a unique
in-situ UAV metrology system that allows multiple missions
using the same antenna probe and platform in a frequency
range from 2.5 GHz to 32 GHz without the need of using
different probes and re-calibration of the metrology system.
Excellent probe performance in terms of co-polar patterns and
high cross-polarization isolation are obtained. The proposed
system uses a stable and mature UAV technology with a
state-of-the-art RTK-DGPS with precise gimbal, which makes
an excellent platform candidate for in-situ far-field antenna
measurements of antenna used in communication and radar
systems.
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