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applications in electromagnetics was born. Therefore, I would like to express

deep gratitude to all my advisors and professors that willingly and kindly sat

with me, taught me, and welcomed me in their projects. They were a source of

inspiration and my experience there helped me grow as well as opened many

v



doors, including the opportunity for me to get to this point, and for that also,

I am grateful.

Finally, a special thank you to my family for all their support, especially

my father, Gilberto, for all of his wisdom and for laying down a path for me

to follow by believing in myself. To my mother, Amagie, whose love and kind

words of encouragement always composed me through the tough times. With-

out them, none of this or any other accomplishments would be possible. Also,

to my younger brothers, Eduardo and Armando, both of whom I look up to

in many ways. I would also give a special thank you to my beloved grand-

mother, Amanda, for her infinite love and for being my first teacher. I admire

her strength more than anyone. Finally, to my late grandfather, Ramón, for

supporting me throughout my life until the beginning of this journey and for

teaching me how to learn.

vi



Table of Contents

Abstract xix

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Proposed Research . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . 17

2 Fundamentals 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Polarization Requirements for Weather Radars . . . . . . . . . 19

2.3 Polarization Definition for Dual-pol Phased Arrays . . . . . . 23

2.4 Polarization Challenges in Phased Array Antennas . . . . . . . 27

2.4.1 Radiating Elements . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Mutual Coupling . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Surface Waves . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Edge Effects/Diffraction . . . . . . . . . . . . . . . . . 40

2.5 Array Antenna Fundamentals . . . . . . . . . . . . . . . . . . 43

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



3 Edge Diffraction Theory 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Geometric Optics . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.2 Monopole . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.3 Microstrip Patch Antenna . . . . . . . . . . . . . . . . 58

3.3 Geometrical Theory of Diffraction . . . . . . . . . . . . . . . . 64

3.3.1 Uniform Theory of Diffraction . . . . . . . . . . . . . . 66

3.3.2 Diffracted Fields . . . . . . . . . . . . . . . . . . . . . 69

3.4 Analytical Model . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Two-point Diffraction Method . . . . . . . . . . . . . . 77

3.4.2 Equivalent Current Method . . . . . . . . . . . . . . . 80

3.4.3 Four-Edge Equivalent Current Model . . . . . . . . . . 82

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Impact of Edge Diffraction in Finite Phased Array Antennas 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Co-polar Mismatch Study . . . . . . . . . . . . . . . . . . . . 88

4.3 The Average Embedded Element Pattern . . . . . . . . . . . . 92

4.4 Cross-polarization Performance Study . . . . . . . . . . . . . . 102

4.4.1 Internal Gaps . . . . . . . . . . . . . . . . . . . . . . . 109

4.5 Mutual Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Analytical Model Validation and Results 114

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 Monopole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



5.3 Microstrip Patch Antenna . . . . . . . . . . . . . . . . . . . . 123

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Epilogue 132

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

References 141

ix



List of Tables

3.1 Regions around a PEC wedge and their existing components. . 53

4.1 Co-polar mismatch at boresight of the individual elements on a

5x5 array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

x



List of Figures

1.1 Sketch of a PAR with electronic beam steering. The PAR is

composed of an arrangement of subarrays, which introduces in-

ternal gaps between them. . . . . . . . . . . . . . . . . . . . . 2

2.1 Spherical coordinate system of the electric fields for the orthog-

onal dipole moment ~M1 and ~M2 [8]. . . . . . . . . . . . . . . . 24

2.2 Top view and side view illustrations of the MPA and its radia-

tion mechanism [51]. . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Some examples of common feeding techniques for MPAs [51]. . 29

2.4 Radiation pattern for the MPA [51]. . . . . . . . . . . . . . . . 29

2.5 MPA efficiency and bandwidth as a function of substrate thick-

ness [52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Bandwidth calculation method comparison (courtesy of J. Salazar). 32

2.7 Representation of mutual coupling between antenna elements

(courtesy of J. Salazar). . . . . . . . . . . . . . . . . . . . . . 33

2.8 Mutual impedance Z12 between two dipoles as a function of

separation distance [1]. . . . . . . . . . . . . . . . . . . . . . . 34

2.9 H-plane element gain functions for a center element of a 7-by-9-

element dipole array (λ/2 dipoles, λ/4 above ground.) Element

spacings denoted Dx and Dy. Note: dashed curve is for isolated

dipole over ground [1]. . . . . . . . . . . . . . . . . . . . . . . 34

xi



2.10 (a) Illustration of mutual coupling between elements with re-

spect to the center elements. (b) Top view of the coordinates

and arrangement of elements. . . . . . . . . . . . . . . . . . . 36

2.11 Diagram of surface waves in a dielectric surface (courtesy of J.

Salazar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.12 (a) Graphical illustration of the propagation constant. (b) Grat-

ing lobe diagram with surface waves showing. . . . . . . . . . 38

2.13 (a) Grating lobe diagram showing calculated scanning perfor-

mance for the proposed antenna array, (b) simulated active re-

flection coefficient as a function of scan angle at 9.5 GHz for H-

(—) and V-ports (- - -). . . . . . . . . . . . . . . . . . . . . . 39

2.14 A representation of currents generated by internal gaps between

subarray panels. . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.15 The park and probe (P&P) results are compared to the ones

obtained using the mutual coupling-based (MC) technique for

different subarray configurations. (a) Shows the estimations

for the central elements while (b) shows the inclusion of the

elements at the edges [60]. . . . . . . . . . . . . . . . . . . . . 42

2.16 3x3 MPA array showing the element patterns at each position

of the array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.17 Diagram of a phased array antenna with its independent sources

of excitation Vn with element separation d. (courtesy of J.

Salazar). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.18 Active (—) and isolated (- - -) element pattern of [22]. . . . . 46

3.1 Diffraction by a wedge with a straight edge. . . . . . . . . . . 50

xii



3.2 Ray tracing of a source to the point of diffraction and the

point of observation with respective regions and fields that are

present. The regions are separated by the reflected shadow

boundary (RSB) where the reflected rays stop to exist and the

incident shadow boundary (ISB), where only diffracted fields

are present below it [25]. . . . . . . . . . . . . . . . . . . . . . 51

3.3 A plane wave of (a) hard and (b) soft polarization incident upon

a PEC wedge. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Normalized GO pattern solution in dB for a plane wave with

(a) hard and (b) soft polarizations with incident angle φ′ = 40◦

upon a PEC wedge at distance ρ = λ. . . . . . . . . . . . . . . 55

3.5 (a) Representation of GO rays for the case of a λ/4 monopole

with respective direct and reflected fields. (b) Normalized GO

pattern of the monopole over an infinite ground plane. . . . . 57

3.6 Representation of the currents generated by each aperture of

the MPA cavity. These currents are determined by the field

distribution under the patch and is the radiation mechanism by

with the radiation patterns are calculated. . . . . . . . . . . . 59

3.7 Orientation of electric fields bounded by the cavity produced by

the two main propagating modes E01 and E20. . . . . . . . . . 59

3.8 Calculated patterns for the rectangular microstrip patch an-

tenna in (a) E- and (b) H-plane for co- ( — ) and cross-pol ( -

- - ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.9 Incident and reflected diffracted fields from a plane wave source

with incidence angle φ′ = 40◦ upon a flat half-plane (n = 2). . 69

xiii



3.10 Normalized total field ( — ) and GO solution ( - - - ) of an inci-

dent plane wave in (a) hard (b) soft polarizations with incident

angle of φ′ = 40◦ upon a 45◦ wedge at distance ρ = λ. . . . . . 71

3.11 Reflected diffracted fields for different source positions ρ and a

fixed incident angle of φ′ = 40◦ and a wedge angle of n = 2. . 72

3.12 Incident diffracted fields for (a) soft and (b) hard diffraction

for different source distances ρ and a fixed incident angle of

φ′ = 40◦ and a wedge angle of n = 2. . . . . . . . . . . . . . . 73

3.13 Total field of an incident plane wave for different distances in

(a) hard (b) soft polarizations with incident angle of φ′ = 40◦

upon a flat half-plane where n = 2. . . . . . . . . . . . . . . . 74

3.14 (a) Soft and (b) hard diffracted fields of an incident plane wave

upon a flat half-plane at distance ρ = λ and a wedge angle of n

= 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.15 Total field of an incident plane wave in (a) hard (b) soft polar-

izations with a fixed distance of ρ = λ upon a flat half-plane

where n = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.16 Total field of a (a) centered line source placed between two

points of diffraction with (a) hard and (b) soft polarizations. . 78

3.17 Total field of an (a) off-centered line source placed between two

points of diffraction with (a) hard and (b) soft polarizations. . 79

3.18 Equivalent current modeled by the diffraction along the wedge. 81

3.19 Illustration of the modeled four-edge equivalent currents. . . . 83

4.1 Geometric optics pattern with unit amplitude used to charac-

terize diffracted field impact in phased array parameters. . . . 88

xiv



4.2 Calculated total fields of an ideal source over a ground plane of

varying size (w). . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Calculation of the element patterns represented by the position-

ing over the ground plane. . . . . . . . . . . . . . . . . . . . . 91

4.4 Illustration of the copolar mismatch at boresight (θ = 0◦) for

each element of a 5x5 configuration. (a) Arrangement of ele-

ments (b) mismatch values with respect to element’s position. 92

4.5 Element patterns for a 5x1 linear array are calculated with two-

point diffraction and are overlapped. Below the overlapped iso-

lated element patterns is the calculated scanned array patterns

following the gain of the average element pattern. . . . . . . . 94

4.6 Total field calculations for (a) different element spacings for (b)

an array with different number of elements. . . . . . . . . . . . 95

4.7 (a) One-probe single-polarized MPA unit cell used for the aver-

age pattern simulations. (b) E-plane and (c) H-plane patterns. 97

4.8 Overlapped embedded patterns for each E- and H-plane cuts

at each location of a 1x5 array configuration for (a) an isolated

element at each position and (b) for each element in the array

environment with neighboring elements including mutual cou-

pling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 Overlapped embedded patterns for each E- and H-plane cuts

at each location of a 5x1 array configuration for (a) an isolated

element at each position and (b) for each element in the array

environment with neighboring elements including mutual cou-

pling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xv



4.10 Overlapped embedded patterns at each location of a 5x5 array

configuration for (a) an isolated element at each position and

(b) for each element in the array environment with neighboring

elements including mutual coupling. . . . . . . . . . . . . . . . 101

4.11 (a) Differential-fed single-polarized MPA unit cell horizontally

polarized used for the average pattern simulations and cross-

polarization characterization. (b) E-plane and (c) H-plane pat-

terns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.12 Overlapped embedded patterns at each location of an array con-

figuration for (a) an isolated element at each position of a center

row of 1x7 and (b) for each element in each position of a center

column of 7x1 and their corresponding E and H-plane patterns

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.13 Overlapped element patterns at each location of a (a) 6x6 even-

numbered array configuration and a (b) 7x7 odd-numbered ar-

ray configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.14 Overlapped embedded patterns at each location for a 6x6 array

configuration with (a) tapering and no failed elements and (b)

for tapering with a 5% element failure without the presence of

mutual coupling. . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.15 Overlapped array scanned patterns with the average embedded

element pattern for the previously discussed 6x6 configuration

of differential-fed MPA showing (a) all elements active and (b)

a 5% element failure. . . . . . . . . . . . . . . . . . . . . . . . 108

4.16 Simulated results of radiation pattern of element tangentially

polarized to the internal gaps between two panels. . . . . . . . 110

xvi



4.17 Two λ/2 sized unit cells containing monopoles are placed with

a fixed separation of λ/2 and the ground plane is increased by

a factor of a in terms of λ. The magnitude and phase of the

mutual coupling between the two elements is illustrated. . . . 111

4.18 Simulated 5x5 configuration of monopoles with an infinite and

a finite conductive surface (2.5λ) to show the effects of added

scattering from the edges to the final column of the array. . . 112

5.1 (a) Side view illustration of diffracted fields generated by the

placement of a monopole along a ground plane and (b) a top

view including the equivalent currents generated by a monopole

antenna of about λ/4 in length on a finite ground plane [62]. 118

5.2 A comparison of a simulated λ/4 monopole element at 5.45 GHz

placed in the (a) center [0,0] position and (b) corner [1,1] posi-

tion of a λ/2 spacing 3x3 array configuration with and without

neighboring elements for mutual coupling [62]. . . . . . . . . . 119

5.3 Comparison of theoretical (proposed method), simulations, and

measured results of an isolated monopole antenna patterns with

the effect of diffracted fields on co- and cross-pol when placed at

(a) center [0,0] position, (b) edge [0,1] position, and (c) corner

[1,1] position on a 4λ sized ground plane at 5.45 GHz. The (d)

relatively thin (1.57 mm) aluminum sheet is (e) mounted on an

electromagnetically invisible pedestal for far-field measurements

[62]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.4 Integrated cross-polarization levels of a displaced quarter-wavelength

monopole with respect to the distance from the center of the

3.5λ ground plane. . . . . . . . . . . . . . . . . . . . . . . . . 123

xvii



5.5 Procedure to develop the finite gnd plane solutions for an arbi-

trary element FEM solution data with infinite ground plane. . 124

5.6 Comparison of the FEM results for both infinite and finite

ground planes with the calculated results using the proposed an-

alytical model. The patterns of the infinite ground plane FEM

solution is introduced to the 4-edge ECM analytical model in

order to be compared with the predicted finite ground FEM

solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.7 Results for an nonprincipal plane (D-plane) of the infinite and

finite ground plane FEM solutions compared to the approxima-

tions using the 4-edge ECM analytical model. The calculations

are done for an element at the exact center of the ground plane. 126

5.8 Antenna element displaced from the (a) center (0,0) to a posi-

tion closer to (b) the edges (0,1) along x-axis or perpendicular

to the polarization. . . . . . . . . . . . . . . . . . . . . . . . . 127

5.9 Antenna element displaced from the (a) center (0,0) to a posi-

tion closer to (b) the edges (1,0) along y-axis or parallel to the

polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.10 Antenna element displaced from the center to a position closer

to the edges along x-axis and y-axis (1,1) with a diagonal move-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.11 Antenna element displaced from the center to a position closer

to the edges along x-axis and y-axis (2,1) with a diagonal move-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.12 Antenna element displaced from the center with twice the di-

agonal movement along the x-axis and y-axis (2,2). . . . . . . 131

xviii



Abstract

An analytical model is proposed to characterize and quantify the effects that

diffracted fields have on the performance of phased array antennas. The work

involves the combination of diffraction theory techniques and how each can be

used to analyze this phenomena with the use of antenna elements as sources.

As these antenna elements are placed along a ground plane of relatively large

size in terms of λ diffracted fields can perturb the expected cross-polarization

radiation performance of the element. As the element is moved along the

ground plane and at different relative distances from the edges, depending

on the electromagnetic radiation nature of the antenna structure, these edges

produce diffracted fields that can affect the performance of the co- as well as

the cross-polarized fields of the antenna. This is of great importance when

working with highly pure polarized elements for applications that require low

cross-polarization. The expansion of an equivalent current model is proposed

where the antenna element can be expressed at a distance from the edges

and the diffracted fields generated from such edges are calculated from these

equivalent currents. Every element position over the ground plane will generate

a theoretical equivalent current that would radiate the diffracted fields, which

then contribute to the overall array pattern. This work shows a successful

implementation of the proposed technique and how this can be combines with

finite element method (FEM) analysis in order to predict the radiated fields

xix



from different element positions providing an advantage over resource hungry

simulations. This proves to be an effective tool by reducing the calculation

time substantially for scalable applications where the phased array can be over

thousands of elements and extremely difficult to gather resources to produce

a predicted pattern.

xx



Chapter 1

Introduction

1.1 Motivation

A phased array antenna consists of a number of radiating elements spaced out

in some lattice configuration and fed by variable attenuators and phase shifters

or time-delay controls. This allows for a coherent summation of the elements’

radiation patterns to form a beam that can be electrically shaped and steered

to certain angles while having a fixed aperture [1]. Since the 1950s, phased

array radars (PARs) have been used for military surveillance with the ability

to detect multiple targets from many directions [2]. As the development of

radar technology progresses, the potentials for PAR applications become far

more attainable. The development of technology in computer processing and

electronically controlled attenuators and phased shifters as well as analog to

digital converters grants rapid beam steering and different beam shapes. This

capability of rapid scanning is now of special interest for weather and air

surveillance applications to perform multiple functions in one radar unit with

fast temporal resolution [3].

PAR technology, as that shown in Figure 1.1, continues to be a growing

interest in the weather radar community due to the overcoming of limitations

1



Figure 1.1: Sketch of a PAR with electronic beam steering. The PAR is com-
posed of an arrangement of subarrays, which introduces internal gaps between
them.

that mechanically steered radars have. Mechanically scanned radars have high

operational costs and disadvantageous reliability due to the limited operational

units, which is usually a single unit or transmitter. Furthermore, they are

constrained by sweeping the beam through a specific elevation angle for each

revolution with slow update times of about four minutes or more due to the

size and weight [3]. Alternatively, PARs provide much better reliability due

to the number of operational transmitters and high temporal resolution (< 1

min) and dynamic flexibility for diverse scanning modes. Subsequently, in the

past 10 years, PAR technology has been used for dual-polarized atmospheric

applications, where the system typically will transmit two orthogonal com-

2



ponents; one component in horizontal (H) polarization and the other one in

vertical (V) polarization. Nonetheless, dual-polarized PARs for polarimetric

weather applications require high polarization purity (−20 to −40 dB) and an

excellent mismatch between the co-polar patterns (< 0.1 dB) of both polariza-

tions for accurate measurements when operating various polarization modes

[3], [4].

Typically for dual-polarized PARs, one waveform generator is operated

and the signal is divided and distributed to each V- and H-pol port across

the array. To transmit and receive the waveform signals, analog transmit and

receive (T/R) module architectures, consisting of high-power amplifiers, low-

noise amplifier receivers, phase shifters, and attenuators are integrated and

placed immediately behind the antenna element terminals. With continued

evolution in PAR architecture and technology, waveform generation functions

can now be placed either behind subarrays or every individual element [5].

This “holy grail” of PAR technology, other-wise known as fully-digital phased

array radars have more significant beamforming flexibility, bringing forth the

multi-function phased array radar (MPAR) as a vision to implement both

ground-based weather and air traffic surveillance [6]. Digital beamforming

with the use of a fully-digital phased arrays allows for simultaneous tracking

of multiple types of targets and faster update times. This brings an interest

in operating PARs to the individual element level with the ability to selec-

tively illuminate the aperture at arbitrary locations of the array for multiple

scanning strategies and beamforming techniques [5]. Therefore, adding to the

demand for high-performance radiating elements to have desired performance

requirements down to the element level.

Having such strict radiation requirements for cross-polarization purity and

3



scanning capabilities, leads to challenges in antenna element design. When

designing for high isolation of up to 30 dB or more between polarization

ports, antenna losses in the form of spurious radiation can significantly im-

pact the isolation between H and V field components. This is measured as

cross-polarization fields. It is well known that antenna elements produce spu-

rious radiation due to imperfections in the radiator and feeding structures.

In addition, surface waves contribute to cross-polarization degradation, es-

pecially when placed over a flat conductor that usually contains a dielectric

surface, adding conductor and dielectric losses in the form of spurious radi-

ation [7]. This unintended radiation, as well as intended radiation produced

by the antenna source, strikes discontinuities in the ground plane and produce

diffracted fields that also affect the cross-polarization and sidelobe levels of the

array. Nevertheless, PARs are composed of linear or planar array configura-

tions with antenna elements usually spaced in rectangular lattices and a flat

ground plane to shield the backend of the radar system from the antenna radi-

ation. Therefore, this conductive sheet located between the antenna elements

and the backend architecture exposes this spurious radiation to discontinuities

where diffracted fields are generated.

Overall, diffraction fields are dependent on many factors that are present

in a phased array antenna. Space and surface waves produced by different

antenna elements strike the edges and produce diffracted fields based on the

wedge geometry and the amplitude, phase, and polarization of the incident

wave generated by the radiating element source. Therefore, the location of

the element with respect to the edges is a critical factor as well as the radia-

tion characteristics determined by the type of antenna element. Furthermore,

since diffracted fields are a local phenomena that interacts with the antenna.
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These interactions cause changes in its S-parameters, frequency response, and

impedance. All these effects translate to changes in mutual coupling between

the elements, especially those closer to the edge.

Little to no work is done to predict the behavior of diffraction phenomena

in an array environment and how the performance is affected. The impact of

edge diffracted fields on the antenna element performance and the overall scan-

ning performance of dual-pol PARs is mainly addressed. The diffracted fields

are analytically approximated and would prove to be a helpful tool for PAR

design and integration in multiple applications, including weather surveillance.

Nonetheless, this is more true for larger-scale radar systems that contain mul-

tiple panels that introduce a large number of discontinuities throughout the

antenna aperture.

1.2 Problem Statement

As microwave component technology becomes more affordable for phased array

systems, the weather radar community has brought their attention to the use

of agile electronic beam steering for meteorological measurements [8]. How-

ever, with the added dynamic capabilities of electronic scanning and shaping

of the beam, phased array antennas face many design challenges. Typical de-

sired performance requirements, e.g., in weather applications, are: wide-angle

scanning, narrow beamwidth, high-gain, low sidelobe levels (SLL), very low co-

polarization mismatch and low cross-polarization levels throughout the whole

scanning range [3], [9]–[11].

For weather radar, accurate measurements of hydrometeor and severe storm

formations are of utmost importance. PARs offer high temporal resolution

(< 1 min) and dynamic scanning modes that reveal more details of the scanned
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volume in comparison to a conventional dish antenna radar. Furthermore, to

obtain detailed description of the shape of hydrometeors and other objects that

would compose a storm, polarimetric weather radars transmit and receive hori-

zontally (H) and vertically (V) polarized electromagnetic waves. With dual-pol

capabilities, different polarization modes can be used to analyze the covariance

between backscattering H and V components from particles. Therefore, polari-

metric weather radars can either operate in alternate modes, such as alternate

transmit and alternate receive (ATAR), or hybrid modes, like simultaneous

transmit and simultaneous receive (STSR). STSR is by far more versatile and

easier to algorithmically implement due to no lag between signals providing

more accurate measurements [12]. However, it is more sensitive to pertur-

bations in the polarization states produced by errors in the radar system.

Consequently, these errors will affect the measurement’s accuracy [4].

An important polarimetric measurement parameter that helps determine a

hydrometeor’s shape is differential reflectivity (Zdr). It is produced by the ratio

between the backscattered power estimates in both H and V polarizations. To

successfully obtain this parameter, in STSR for instance, measurements need

to have a bias in differential reflectivity (∆Zdr) of no greater than 0.1 dB,

meaning cross-polarization levels of less than -40 dB [4]. However, as pre-

viously mentioned, perturbations in the radar system can translate to errors

in the measurements. Therefore, the design of antennas with high polariza-

tion isolation is necessary and requires reducing any small contributions to

cross-polarized fields into the system’s performance.

Small spurious radiation in the array can significantly impact the cross-

polarization when an isolation higher than 30 dB is required. Spurious radia-

tion may be found in the feeding mechanism of the antenna element, as well

6



as conductor and dielectric losses in the form of surface waves. In addition,

radiation produced by the antenna element strikes the edges of the ground

planes where diffraction phenomena is produced. These diffracted fields will

impact the cross-polarization levels of the antenna. Therefore, achieving low

cross-polarization (< -40 dB) for phased array technology is extremely diffi-

cult, especially when scanning at nonprincipal planes, e.g., the diagonal plane

(D-plane).

Diffracted fields from a single element may be found around its perimeter,

including neighboring panels in a larger-scaled phased array antenna, where

panels can be added to expand the size of the antenna aperture. To predict the

behavior of the PAR accurately, the system can be simulated. However, the

amount of resources needed to calculate the fields of a large number of elements

and discontinuities in the ground plane is exorbitant. Therefore, an analytical

model that predicts diffracted fields in the array is proposed to evaluate the

overall performance of the array that would include cross-polarization levels

for dual-pol applications. However, little insight is found in literature of the

effects that diffraction at the edges have on the cross-polarization pattern of

the antenna and overall array performance. This research hypothesizes that

one of the main contributors to cross-polarization degradation in phased array

antennas is produced by diffraction phenomena. The extent to which spurious

radiation affects the performance of a dual-polarized array is explored.

1.3 Proposed Research

In this research, the components that contribute to the contamination of cross-

polarized fields in an array antenna are evaluated. An overview of desirable

antenna element prospects is taken into consideration. A study into the an-
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tenna element structures can give a better understanding of their radiating

properties and how they fit into weather radar applications. With an under-

standing of possible influences in the polarization errors of an antenna element,

a deep study is done as to how the element behaves when introduced into a

finite edged ground plane. The uniform theory of diffraction (UTD) and equiv-

alent current method are used to evaluate the effects that the edges have on the

radiation characteristics of different radiating elements. This will provide an

analytical model for evaluating the cross-polarization of an array that includes

diffraction.

Array scanned pattern performance will greatly be influenced by the edge

effects. Therefore, quantification of the influence in scanned patterns should

be possible with the analytical model and will answer questions about the

behavior of edges in an array. This model will take into account the geometrical

aspects of the ground plane where the antennas are placed with respect to

every point of diffraction. Hence, an expansion can be made to larger-scaled

arrays with multiple diffraction points inside of the aperture, i.e., internal gaps

between panels of the array.

When considering the scattering from an illuminated conductive plane,

two dominant mechanisms are to be considered, reflected and diffracted fields.

These fields are determined using methods such as geometric optics (GO)

and the geometrical theory of diffraction (GTD), respectively. An extension

to refine the GTD, was the UTD and the equivalent current method. The

equivalent current method models every diffraction point as intervals along a

half-plane edge as an equivalent magnetic or electric current and proves to be

useful to predict the pattern for cross-polarized field components at principal

and nonprincipal planes.
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To validate the results of the new analytical model, which incorporates

the techniques mentioned, a set of measurements will be made for various

antenna elements. The model predicts individual patterns based on their

placement along the ground plane and differentiates between contributions

from effects such as mutual coupling and others that might have an impact on

cross-polarization. Having a clearer insight as to how diffracted fields play a

role with the radiation characteristics of an antenna source, opens a discussion

about how to deal with edge effects.

A direct relationship between the geometrical aspects of antenna place-

ments for phased arrays plays a role in how diffraction will interact with the

antenna’s performance. This will be evaluated by placing several elements

along with different positions of a modifiable ground sheet. A linear array

can be placed asymmetrically from the sheet to see its performance variation.

Also, the location of the element with respect to other neighboring elements

and their distance with relation to the edges can change the mutual coupling

parameters and this can be experimented with how edge effects can affect these

parameters.

Since UTD can assume that the incident fields are at far-field, it is simple

to produce resulting far-field patterns in all planes by combining finite element

method (FEM) results from antenna elements and with the diffracted fields

around all points of incidence. The advantage of having a dynamic analytical

model is that it can be expanded to calculate array patterns with details such

as multiple panels with a certain distance between them. Therefore, the array

can be evaluated with different configurations of panels for a large-scale PARs.
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1.4 Contribution

The main contribution of this research is an analytical model that predicts

the perturbation that edge diffraction has in the overall radiation pattern of

a phased array antenna, including the cross-polarization contamination. Fur-

thermore, a much clearer insight as to how electromagnetic waves behave under

the effects of diffraction is drawn, and a much better understanding of what

changes in impedance and mutual coupling take effect on each antenna ele-

ment spaced around the array relative to the edges. The model is scaleable for

larger structures with multiple panels, making it an effective tool to combine

with other numerical methods such as FEM, PO, etc.

The studies done take into account different element types with differ-

ent ground plane sizes in the element level. Analytical experiments include

different locations and array sizes to further complete a study that can be

expanded to larger scale structures. Included in these experiments are the an-

alytical quantification of edge effect contributions to element pattern’s cross-

polarization and how it affects the array performance. This model can then

be extended to be applicable to expandable arrays with multiple tiles and gap

separations between them and how these separations impact the performance

of the array.

A better prediction of the array pattern behavior is achieved with exper-

iments on element frequency response, element patterns based on location

over a ground plane, and the analytical model for predicting the effects of

diffracted fields on the radiation pattern of each individual element of the ar-

ray. With this model, it is shown that a more accurate representation of a

phased array performance is possible by including edge effects into the calcu-

lations. Making this analytical model valuable for in-detailed predictions of
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high-performance PARs.

1.5 Literature Review

In the topic of antennas and electromagnetic theory, diffraction is the pro-

cess of spreading of a wave when incident upon an edge, corner, or vertices of

boundary surfaces. It has been discussed so far that diffraction of the edges

of the ground plane and the effects it has on the far-field radiation pattern

of an antenna are due to the presence of the discontinuities of a finite ground

plane [13]–[23]. These effects become more predominant at edges where the

dimensions exceeds a wavelength. Diffracted fields, therefore, depend on the

edge’s geometry (straight or curved) and the amplitude, phase, and polariza-

tion of the incident wave. The interest of this work comprises on the modeling

of diffraction from a finite ground plane. The geometrical theory of diffraction

(GTD) was introduced to extend on geometric optics (GO) and was intro-

duced by Keller in the 1950s [16], [24]. GO has been often used to determine

the distribution of light intensity as a ray tracing technique that accounts for

direct, reflected, and refracted rays. However, it does not account for the lo-

cal phenomena of diffraction, which is analogous to the laws of reflection and

refraction.

In the same way that the GO pattern is the sum of all the rays (direct, re-

flected, and refracted) at the point of observation, in GTD, a field is associated

with each diffracted ray and the total field is then the sum of all rays at that

point [25]. The GTD treats electromagnetic waves as rays and does not require

integration of currents as in physical optics (PO) by use of dyadic diffraction

coefficients, similar as to how reflected rays are calculated by reflection co-

efficients. The treatment of electromagnetic waves in the form of rays helps
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simplify for high-frequency problems, since the spreading of waves is the same

as if they where propagating rays from the point of incidence. However, GTD,

in its original form, exhibited singularities near its ray-shadow and caustic

regions. Therefore, to compensate for these discontinuities, a uniform asymp-

totic high-frequency method is necessary to smoothen the transition between

these regions [26].

A widely popular approach to correct for the singularities near the bound-

aries is the uniform theory of diffraction (UTD) [15]. The use of the UTD in

modeling the effects of diffraction in antenna patterns is fairly popular since

proven to be accurate [27]. The application of UTD has been used at the

aperture of antennas as well as antennas placed on finite ground plane struc-

tures [28]. When finite ground plane edges are close enough to the radiating

structure of an antenna UTD can accurately represent the effects that local

diffraction has on the far-field patterns in both principal (E and H) planes [29].

After being modeled in an infinite ground plane structure, the study shows how

the amplitude of the pattern changes as the antenna is introduced to a finite

ground plane due to edge diffraction. The use of UTD was also introduced

for the calculation of radiation patterns to better predict the diffracted fields

including backlobe and cross-pol radiation of the microstrip patch antenna

(MPA) based on the fields generated by a cavity model and modal expansion

[14]. This suggests that a combination of UTD and equivalent current methods

are appropriate to predict the far-field radiation pattern of different antenna

elements, including the MPA. The study also suggests that with the use of

corner diffraction coefficients, the diagonal plane can be predicted [30].

An equivalent current method (ECM) was developed to make corrections

for inaccuracies of diffracted field singularities and inaccuracies near caustic
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regions, specifically for curved edges [18], [31]. The method involves evaluating

multiple points of diffraction along the edge of a conductive strip or ground

plane and modeling the total diffracted fields by using equivalent magnetic

or electric current along the rim of the edges. The farfield patterns of the

induced equivalent currents in the ground edge have been derived using vector

potentials [32]. The induced equivalent currents on the ground plane edges

are estimated first and the total radiated fields are computed based on the

induced currents in the ground edges and the equivalent sources of the antenna

aperture. The gain was shown to vary widely, increasing the radiation intensity

as the ground plane size increases by preventing radiation in the shadow region.

The effects of the ground plane size on the radiation pattern, gain and axial

ratio have been studied using a moment methods analysis [33]. For each cavity

mode there is an optimum ground plane radius and thickness that maximizes

gain. The ground plane size for each mode is shown to have an effect on its

radiation pattern for optimum gain and axial ratio. This implies that it affects

higher-order modes in rectangular MPAs, consequently affecting the cross-

polarization levels of dual-polarized antennas. The accuracy of the models,

however, are questionable for ground plane sizes of less than one free space

wavelength.

Not only the size but also the thickness of the ground plane may affect

performance of the mounted antenna due to edge diffraction [17]. Radiation

conductance is also computed to be much less than it being with an infinite

ground plane [34]. The conductance determines the input impedance of the

patch, causing a change in the position of feeding of a 50 ohm match, therefore,

it does make sense that for dual-polarized MPAs, the effects of the ground

plane reflections will affect port isolation, making the inclusion of edge effects
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into the calculation of antenna performance critical.

Limited studies have been done of the effects edges have on dual-polarized

and low cross-pol antennas [13], [35], [36]. The effects of diffraction in a linear

array of dual-polarized wideband elements that contain thick substrates are

shown [36]. The change in ground place size can be appreciated by the changes

in ripples in the co- and cross-pol patterns of the antenna. Copper pillars are

added below the antenna source to suppress such ripples caused by ground

edge effects and shows an improvement in cross-pol especially in the H-plane.

However, for large arrays of more complicated structures for high-performance,

where devices are located in the back panel, these approaches seem impractical.

An analysis that includes the effects of finite ground planes in microstrip

patch antennas is shown in [21]. However, there is no good accurate agreement,

especially in the backlobe radiation. This is due to the lack of diffraction

analysis. The utilization of UTD to account for the finite ground plane edge

diffraction does provide a more accurate agreement [37]. The effects of ground

plane sizes on the radiation pattern of a patch are also shown in [38] and a

solution to reduce its effects is demonstrated increasing the gain at broadside.

Cross-polarization level increases are shown with increasing ground plane size

[36]. This also takes into account thick substrate antennas for broadband

applications where surface waves tend to be stronger. To reduce the cross-

pol of the array, the ground plane size has to be reduced. However, this is

not possible for low-sidelobe and wideband array applications. A solution

to improve the degradation of axial ratio of circularly polarized antennas by

making EBG modifications to the ground plane are presented in [39]. This

solution, however, is complicated to model accurately and design.

In regards to phased array antennas, as the array is larger, all elements
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will see a uniform contribution in the element patterns [22]. However, when

it is not large, elements do see differences in patterns due to the effects of

the edges of the array that have to be accounted for especially when dealing

with low-cross polarization levels. Ground planes where the microstrip array

or other structures are mounted, can diffract surface and space waves [23].

The diffraction effects shown in [35] pointed out the effects of a finite ground

plane on low cross-pol and wideband antennas. There are also cases where

the ground plane is distorted and changes in shape to reduce the effects of the

edges [39]. They show that for thicker arrays, the gain is reduced, meaning

the efficiency is lost due to surface waves and this could greatly impact the

cross-pol levels. This is to be considered when arrays are mounted on big tiled

structures, where there should be a metallic structure in the back. Effects

from gap separations between tiles are a known possible issue of diffraction for

embedded elements, affecting the scanning of the array [13].

For the modeling and measurement of microstrip patch arrays, a more

accurate representation of the diffracted fields and edge effects have to be

implemented if we want to do rigorous calibration of high-performance, low-

cross pol, wide bandwidth, and wide angle scanning arrays. This impact in

the performance of phased arrays due to diffraction is due not only to external

ground plane edges, but also internal gaps between subarrays [13]. Based on

the literature found of external edges, if the edges are far enough from elements

and the gaps are to have a significant separation between sub arrays, there can

be additional significant degradation in element patterns same as with external

edges. This is to be an important observation in dual-polarized elements in

a large array, since due to fabrication limitations they have to be fabricated

and tiled in subarray components. Quantification of grating lobe effects due

15



to these gaps has been shown in [40].

Added discontinuities and therefore sources of diffraction that can compro-

mise the performance of the elements throughout the array has been shown

to degrade cross-polarization levels even further than outer edge effects would

to a large array [13]. Another sensitive mechanism in phased array antennas

that can be affected by diffraction phenomena is the mutual coupling between

array elements [41]–[45]. It is shown that edge diffraction should be added to

computations to represent the mutual coupling in an array more accurately

where the edge is exposed.

The level of diffraction effects experienced by the radiation patterns and

impedance of the antennas in an array is mainly due to the size of the ground

plane and the location of the element source [13], [23], [35]. Co-polar patterns

experience components added in phase to the pattern causing ripples in both

broadside and the back radiation. It has also been shown that these effects are

even more noticeable in polarization isolation in the axial ratio of circularly

polarized antennas [39] and of low cross-pol dual-polarized elements reducing

from 10 to 20 dB in the polarization isolation [13], [35]. Changing the size

of the ground plane, where the antenna element is placed in the center, the

cross-polarization contamination increases and changes shape as it gets larger.

The isolation of the between ports, however, seem to improve as the ground

plane size is increased because of the reduction in reflections from the edges.

Nonetheless, the cross-polarization isolation is decreased as the ground plane

is increased.

There is more work needed in analyzing what these edge effects do in an

active array environment. How the asymmetrical contributions of diffraction

actually contribute to the cross-pol of individual embedded elements and how
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internal gaps play an additional role in the degradation of mutual coupling and

radiation patterns. Also, to quantify edge diffraction using current field mod-

eling techniques, shows the significance of different internal gap separations

and its influence in the performance on active phased arrays.

1.6 Dissertation Overview

The dissertation is organized to present the diffraction impact on dual-polarized

phased array antennas. In Chapter 2, PAR requirements for polarimetric

weather radars are reviewed. A clear explanation as to what are the per-

formance challenges for PAR and the design considerations for low cross-

polarization antennas are presented. The theory that predicts the impact

of edge diffractions in the overall radiation pattern of an antenna is discussed

in Chapter 3. The diffraction theory with its uses and limitations is also

presented. This includes the “two-point diffraction”, equivalent current meth-

ods, and the proposed utilization of these tools for the proposed analytical

method to predict cross-polarization fields. In Chapter 4, the impact of edge

diffraction is expressed with the use of these tools and numerical simulations

to show how diffracted fields potentially affect the array’s performance. The

tools mentioned in these chapters are then applied to specific antenna ele-

ments in Chapter 5 where the proposed analytical tool is used to validate the

antenna element patterns for different scenarios. Several experiments based

on numerical simulations are presented in order to validate these tools to be

implemented in phased array environments. Detailed effects of diffraction on

an individual element level are shown along with how these effects change with

respect to ground plane size and the location of the element. Nonetheless, the

addition of multiple elements for different array sizes are introduced to look
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deeper into how edge effects contribute to impedance, mutual coupling, gain

and cross-polarization measurements on different element types. Finally, an

epilogue in Chapter 6 will summarize the findings and explores on possible

methods to mitigate diffraction as well as suggestions on what the next steps

would be to further improve this study.
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Chapter 2

Fundamentals

2.1 Introduction

This chapter will present the requirements for polarimetric weather radars

and challenges. Starting with the current operational challenges that con-

ventional weather radars, which usually are comprised of reflector antennas,

face for dual-polarized polarimetric weather measurements. A brief explana-

tion of dual-polarization operation and techniques are discussed to provide an

understanding of what are the requirements for different type of operational

configurations. Polarization definitions are then defined for the application

of dual-pol PAR and what are the trade-offs in designing antennas for PAR.

Since the main study in this work will be the impact diffraction has in overall

phased array antenna performance with emphasis in polarization performance,

this chapter’s focus is in design challenges to achieve low cross-polarization.

2.2 Polarization Requirements for Weather Radars

Weather radars are used to detect and measure rain intensity as well as the

hydrometeor contents in the volume. Accuracy is of the highest interest for

meteorological measurements. In order to obtain adequate measurements, a
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weather radar antenna must be capable of producing high enough gain for

receiving sufficient power from reflected signals, low sidelobes to mitigate any

type of clutter or contaminated signals from other sources, as well as narrow

beamwidth for good spacial resolution. Besides these general requirements for

radar, it is of general interest that the system be able to identify different

weather patterns and hydrometeor detection.

Efficient hydrometeor classification is dependent upon received backscat-

tered components of a transmitted wave. Single polarized weather radars

would use sensitivity metrics, like reflectivity (Z in mm6m−3) from the backscat-

tered wave in order to determine characteristics of the scanned phenomena.

Reflectivity is the amount of power that is backscattered from precipitation

after being hit by a transmitted wave. A high-reflectivity measurement can

indicate that the volume contains a large amount of rain drops, which can

translate to a large amount of rain rate, or it can indicate the volume con-

tains large drop sizes that can generate large backscattering to the receiver as

well. The same can be said of other hydrometeors, such as hail or snow, which

generate a much higher backscatter reflection than water would.

Besides the ability to measure rain fall, in order to detect and identify

content characteristics in a volume, such as the amount and shape of wa-

ter droplets, polarimetric measurements are extremely useful. Polarimetric

weather radars are generally composed of an antenna with dual-polarized ca-

pabilities and a system for processing the signals to be transmitted and received

in two well isolated channels for horizontal (H) and vertical (V) polarizations.

The use of two electric field components opens a wide variety of operational

modes and polarimetric variables that provide a significant amount of metrics

to detect and analyze weather radar phenomena. Therefore, the received elec-
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tric field components for both polarizations will be dependent on the transmit-

ted wave upon an object and the backscattering produced by it. The scattering

can be represnted by the following matrix:

S =

 shh(θ̂, φ̂) shv(θ̂, φ̂)

svh(θ̂, φ̂) svv(θ̂, φ̂)

 (2.1)

where the shh and svv are the co-polarized backscattering coefficients and shv

and svh would represent the cross-coupling components introduced mainly by

depolarization from the scattering object. These, as well as cross-polarized

fields that are inherent in the design of the antenna would add to any type of

biasing errors in polarimetric variables.

One such polarimetric variable, very much relevant to the motivation of

this research, is the differential reflectivity (Zdr) seen in (2.2). This parameter

provides important physical information of the scattering object that helps

identify the detection of water content in a radar resolution volume.

Zdr = 〈|shh|〉
2

〈|svv|〉2
(2.2)

In order to obtain this information, a signal is transmitted and received in

both polarizations. The ratio between the backscattered signal’s power from

a H-polarized wave (Zhh) and the backscattered power from a transmitted

V-polarized wave (Zvv) provides information about the shape of the droplets

in the contained volume. As the droplets fall they can have an oblong shape

based on their size and weight. This, for example, will provide a larger return
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for backscattered wave signals in the H polarization rather than in the V

polarization. These indicators are also useful in the overall detection of what

is water.

With advancements in technological efforts to provide accurate measure-

ments, polarimetric weather radars, depending on the versatility of the system

design, may use a combination dual-polarized polarization transmission and

reception modes. Mainly, these modes are composed of a combination of al-

ternate or hybrid transmission and reception modes. Alternate transmit and

alternate receive (ATAR) mode performs both transmission and reception of

the signals in both H- and V-polarizations alternately, while hybrid mode may

transmit or receive both simultaneously, such as simultaneous transmit and

simultaneous receive (STSR). However, antenna structures in practice do not

purely radiate in one polarization and some form of contamination occurs

as the wave is depolarized by imperfections and the nature of the particular

antennas radiation mechanism. Hence, contamination between channels is a

common occurrence that can be mitigated to some extent by the design of

more purely polarized radiating elements or biasing correction of the signals

[8].

Requirements for such polarization modes depend on the use of parameters

such as Zdr and depend on the meteorological measurements needed to detect

and classify hydrometeor’s shape, size, density, and composition. Zdr measure-

ments vary from smallest particles like drizze and larger rain drops between

0.1 dB to about 3-4 dB. As Zdr increases, biasing errors are more tolerable.

However, tolerances for lower Zdr measurements require a bias error of no more

than 0.1 dB. To attain this tolerance level, peak cross-polarization levels of -

20 dB for ATAR and -40 dB for STSR with respect to the co-polarizationhave
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been determined [46]. In order to achieve these low levels of cross-polarization,

effective calibration techniques and error correcting algorithms need to be im-

plemented.

2.3 Polarization Definition for Dual-pol Phased Arrays

As PAR technology has evolved, the use of electronically steered beam has

become more attractive to polarimetric weather radar applications. With the

advantages in two-dimensional electronic scanning of the beam comes chal-

lenges when accurate polarimetric radar measurements are required. Unlike a

dish antenna radar, which has a fixed beam and rotates mechanically, ground-

based PAR are physically fixed and as it electronically steers the beam in two

dimensions, its properties change. Theoretically, an idealized formulation for

a polarimetric PAR is in the form of two crossed dipoles [8]. To understand

the impact that polarization has on polarimetric PAR, formulations are made

to relate the electric fields of the individual array element with the scattered

components of hydrometeors. The electric field for the radiating element is

then based by a dipole moment ~M and is given by:

~Eq(~r) = −k
2e−jkr

4πεr
{
âr ×

[
âr × ~Mq

]}
(2.3)

where q denotes the dipole 1 or 2, which lie along ây and âz respectively, as

seen in Figure 2.1. The dipole moment ~Mq = âqAqe
jΦq , the has an amplitude

Aq and phase Φq.

The transmitted electric fields by the antenna are polarized in the y or z

directions. Both of these antennas will have spherical components âθ and âφ

as follows:
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Figure 2.1: Spherical coordinate system of the electric fields for the orthogonal
dipole moment ~M1 and ~M2 [8].

~Eq(~r) = âθEθq + âφEφq (2.4)

Hence, the transmitted fields by each source will be then dipole moment for

the horizontal dipole (M1ây) and the vertical dipole (M2ây) in their respective

cross products from (2.3) will then be a product of the electric field and their

vector identities [8].

~E1 = Et1 [ây − (âx sin θ cosφ+ ây sin θ sinφ+ âz cos θ) sin θ sinφ]

= Et1~e1 (2.5a)

~E2 = Et2
[
âz sin2 θ − (âx cosφ+ ây sinφ) sin θ cos θ

]
= Et2~e2 (2.5b)

where

Etq = k2e−jkr

4πεr Mq (2.6)
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The characteristics of the H and V waves from a PAR as a function of the

beam’s direction (θ,φ) is then corresponding to the projections of the dipoles

and generates the intensities along âh and âv directions. These projections

toward a local H and V polarizations are formulated in the P projection matrix.

Hence, the electric fields generated by the dipoles are projected into the local

H and V directions as follows:

âh · ~e1 = âφ · ~e1 = cosφ (2.7a)

âv · ~e1 = −âθ · ~e1 = − cos θ sinφ (2.7b)

âh · ~e2 = âφ · ~e2 = 0 (2.7c)

âv · ~e2 = −âθ · ~e2 = sin θ (2.7d)

P =

 âh · ~e1 âh · ~e2

âv · ~e1 âv · ~e2

 =

 cosφ 0

− cos θ sinφ sin θ

 (2.8)

 Eih

Eiv

 = P

 Et1

Et2

 (2.9)

This matrix shows that a PAR produces a cross-polar component as a

product of the projection to the local H (âh) and V (âv) coordinates in terms

of (θ,φ). This projection is then used to convert the wave that is to be incident

upon the precipitation medium and expressed in (2.9). With the existence of
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a medium that the electric field will be backscattered from, a backscattering

matrix will produce the electric fields ~Er that would be received by the PAR.

The complete representation of the backscattered fields that would be received

at the radar would be:

 Er1

Er2

 = e−jkr

r
PTS′P

 Et1

Et2

 (2.10)

where PT is the transpose of the polarization projection matrix P and S′ is the

backscattering matrix from the hydrometeor and incident fields ~Ei including

all of the propagation effects. Hence, this equation (2.10) is the expression for

the received electric fields at each polarized dipole radiator in a PAR including

all polarimetric effects [8].

It is common practice to use linearly polarized elements for weather ap-

plications, specifically for dual-polarized PARs. As, previously mentioned the

projection matrix provides the polarization of the field in space with regards to

spherical coordinates, showing the dependency of polarization with scan angle.

However, since a PAR is meant to scan at principal and nonprincipal planes,

the adequate co- and cross-polarization expression based on Ludwig defini-

tions needs to be used in order to accurately determine the cross-polarized

fields when steering the beam [47]. It is shown, that the adequate definition

used for the projected fields depends on what the antenna source is and what

cartesian plane it lies on.
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2.4 Polarization Challenges in Phased Array Antennas

With the added capabilities of beam steering, many challenges have to be

addressed over a standalone conventional reflector antenna. A PAR will be

composed of multiple radiating elements compared to a conventional radar,

where a number of transmit and receive (T/R) modules are distributed along

the radiating aperture. Due to the increase in radiating elements and T/R

channels, a big roll in the design and fabrication of these systems involves

reducing the costs of implementation as much as possible while still attaining

a level of quality performance. Technical attributes such as scanning per-

formance can be translated into several contingencies such as the radiating

elements design structure and how this interacts with the overall composed

structure of the phased array antenna. This includes the presence of neigh-

boring elements, the materials and platforms on which they are built on, and

the unwanted spurious radiation generated by such. Hence, the arrangement

of these elements and structures play a significant roll on the performance of

the overall PAR.

2.4.1 Radiating Elements

One of the main challenges in the design of a PAR is the selection of the ap-

propriate radiating element. Things to pay attention to in the utilization of a

radiating element structure is the radiation characteristics, such as directivity,

beamwidth, bandwidth, and polarization purity. One of the widely used ele-

ments is the microstrip patch antenna. One of the main advantages of MPAs is

the ease of fabrication and the ability to obtain high-performance capabilities

in a low-profile structure.

The MPA antenna is chosen for its dual-polarized capabilities. Given its
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Figure 2.2: Top view and side view illustrations of the MPA and its radiation
mechanism [51].

wide flexibility in design, many feeding techniques are used in order to excite

the element in different positions to generate orthogonal polarizations. This

can be done with the use of conventional feeding, as seen in Figure 2.2, as well

as other coupling techniques such as probe feeding, proximity or aperture cou-

pling [48], [49]. Coupled feeding techniques, shown in Figure 2.3, produce less

spurious radiation due to magnetic coupling excitation and can be more suit-

able for extremely low cross-polarization situations, however design is more

complicated [50]. In Figure 2.2(b), the MPA radiation mechanism is illus-

trated. It shows that the electric fields are perpendicular to the ground plane

under the cavity, hence, the electric fields that are theoretically produced are

TM modes. The bending of the waves, otherwise called fringing, are caused at

the aperture and produce the radiation fields that are added in phase between

the two radiating slots.

The resulting radiation pattern of the microstrip patch antenna is then
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Figure 2.3: Some examples of common feeding techniques for MPAs [51].

Figure 2.4: Radiation pattern for the MPA [51].

shown in Figure 2.4. The E-plane is the radiation pattern cut along the align-

ment of the electric field’s polarization. H-plane is the orthogonal cut to the

alignment of the electric fields or along the magnetic field’s component. Due

to the aperture radiation currents, the case of the MPA two main electric field

components are present, Eθ and Eφ, and can be calculated in the E- and H-

planes respectively. If the polarization is aligned the y-axis (φ = 90◦) then

the E-plane cut will give the spherical Eθ component and orthogonal to that

(φ = 0◦) the H-plane cut will contain the Eφ component. It is fair to note that

the Eφ component, since it is orthogonal to the Eθ component and tangent

to the ground plane goes to 0, due to image theory. Hence, the electric field

in this cut is negligible at the surface. This will be useful in the following

chapters when discussing diffraction in this cut.

29



The design of this radiating elements is dependent upon what material

properties, like permittivity (ε), it is being built on and its thickness h. De-

pending on the requirements of the antenna performance in terms of band-

width and efficiency the material properties are chosen (see Figure 2.5). It

can be observed that as the material thickness increases, bandwidth increases

but efficiency decreases. Furthermore, as the dielectric permittivity increases,

bandwidth and the efficiency decreases. The material properties will then

determine the dimensions of the patch shown in Figure 2.2, which will be

calculated as follows:

εeff = εr + 1
2 + εr − 1

2

[
1 + 12 h

W

]− 1
2

(2.11)

assuming W/h > 1

W = 1
2fr
√
µ0ε0

√
2

εr + 1 (2.12)

∆L = 0.412 h
(εreff + 0.3)

(
W
h

+ 0.264
)

(εreff − 0.258)
(
W
h

+ 0.8
) (2.13a)

L = Leff −
∆L
2 (2.13b)

Having the dimension of the MPA, the bandwidth (BW ) can be predicted

and approximated using several methods [53]. As an example one of the meth-

ods can be calculated by:

BW = 16
3
√

2
p

er

1
εr

h

λ0

W

L
q (2.14a)
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Figure 2.5: MPA efficiency and bandwidth as a function of substrate thickness
[52].

p = 1− 0.16605
20 (k0W )2 + 0.02283

560 (k0W )4 − 0.009142 (k0L)2 (2.14b)

q = 1− 1
εr

+ 2
5ε2r

(2.14c)

One of the main advantages for using MPA in this work is the ability to mit-

igate cross-polarized fields that are being produced by the spurious radiation

from the antenna structure including its feeding structure. The antenna’s phys-

ical and material parameters take an effect on the level of cross-polarization

[54]. Besides the antenna structure, projection of fields can also be a generator

of cross-pol [47]. In the case there is cross-polarized fields, they will cause a

pressence of Eφ components in the E-plane where Eθ is predominant and Eθ

components in the H-plane where Eφ is predominant. In nonprincipal planes,

cross-polarization definitions must be taken into account. This is highly impor-
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Figure 2.6: Bandwidth calculation method comparison (courtesy of J. Salazar).

tant for PAR applications where the antenna has a fixed coordinate placement

and the beam has its own local coordinate for scanning, as discussed before.

Another important radiating element that is used for this study is the

quarter-wave (λ/4) monopole. This element is extremely useful as a study

case for diffracted fields. One of the main reasons is that it being wire antenna

(a line of current), a monopole, in theory, generates purely Eθ components (see

Figure 2.6) along all of the element’s radiation projection in space. This, as

will be discussed in Chapter 3, will produce equal radiation in the azimuth cut

and where hard diffraction is generated on the ground plane. This proves to

be a practical design for cross-polarization studies as well, due to the element

being of pure polarization and theoretically has an Eφ component of 0. In

practice then, the cross-polarized fields are solely generated by the element’s

imperfections, such as the excitation and the presence of edge effects.
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Figure 2.7: Representation of mutual coupling between antenna elements
(courtesy of J. Salazar).

2.4.2 Mutual Coupling

Mutual coupling is the electromagnetic interaction between elements when

they are in vicinity, as seen in Figure 2.7. The distance between elements will

determine the mutual impedance response between the elements at their point

of excitation, as shown in Figure 2.8 and can also affect their individual radia-

tion pattern characteristics, as seen in Figure 2.9. This, in turn, will affect the

phased array antenna performance, especially in its scanning characteristics

[55]. The mutual coupling in an array can be expressed as an impedance ma-

trix with a number of arranged current distributions with complex amplitude

In for each element related to an applied voltage Vm.

Vm =
∑

ZmnIn (2.15)

Therefore, as the distance between elements changes, the mutual coupling

changes, as seen in a two-element half-wavelength dipole case in Figure 2.8.
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Figure 2.8: Mutual impedance Z12 between two dipoles as a function of sepa-
ration distance [1].

Figure 2.9: H-plane element gain functions for a center element of a 7-by-
9-element dipole array (λ/2 dipoles, λ/4 above ground.) Element spacings
denoted Dx and Dy. Note: dashed curve is for isolated dipole over ground [1].
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As the distance in terms of λ is increased, the variation in mutual impedance

lowers. The variation would also depend on the orientation of the dipoles due

to the difference in electric field orientations. Therefore, for an arrangement of

dipoles where their placement is by the ends of the wire, the mutual coupling

would be much different.

A PAR’s efficiency can be degraded due to mutual coupling. For a dual-

polarized array, the efficiency of one of the ports, e.g., the H port, can be given

by:

ηH = 1− |SHH11 |2−
N+1∑
i=2
|SHHi1 |2−

N+1∑
i=1
|SV Hi1 |2 (2.16)

Another important aspect in the PAR performance is the scanning perfor-

mance which is affected by mutual coupling. The element’s impedance changes

once it is exposed to other elements near by and therefore, the mnth element

will now have an active impedance in the array environment [56], [57].

The active impedance is then a function of the mutual coupling parameters

relative to the neighboring element’s position in space. This parameter can

then be translated into what the scanning capabilities of the active array ele-

ment is and will provide the overall scanning range that the array potentially

has. The active reflection coefficient is then expressed as:

Γamn(θ, φ) =
P∑

p=−P

Q∑
q=−Q

S̄mn,pqe
[−jk(p−m)dxu0+(q−n)dyv0)] (2.17)

where

u0 = sin θ0 cosφ0 (2.18a)
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Figure 2.10: (a) Illustration of mutual coupling between elements with respect
to the center elements. (b) Top view of the coordinates and arrangement of
elements.

and

v0 = sin θ0 sinφ0. (2.18b)

It is now evident that the active impedance of the element in the array

is then dependent on the scan angle (θ0,φ0). Assuming the array is large
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enough making all of the Γamn of the same magnitude, the phased array’s gain

performance as it scans the beam can then be predicted by each embedded

element pattern gain (Ge):

Ge(θ0, φ0) = Gi(θ0, φ0)
[
1− |Γa(θ0, φ0)|2

]
(2.19)

where Gi is the gain of the isolated element and Γa is the active reflection

coefficient expressed in (2.19).

2.4.3 Surface Waves

Surface waves are fields excited in some dielectric bounded medium, usually in

the form of a grounded or ungrounded dielectric slab. In the case of PAR, sur-

face waves can be usually present in printed antennas such as printed dipoles

or MPAs, where the radiating elements are placed over a grounded dielectric

substrate. This substrate can then contain the surface wave that can po-

tentially degrade the array pattern by means of mutual coupling or scanning

performance.

In MPAs, both TE and TM modes of surface waves are possible to be ex-

cited in the grounded substrate. The excitation of these modes introduces scan

blindness in a phased array. Scan blindness is possible whenever the wavenum-

ber, (kc) coincides with the surface wave propagation constant (βsw) [58]. Since

TM0 has a zero cut-off frequency, it will always occur in all substrate-based

antennas. In this case study, the mentioned mode is the only introductor of

scan blindness.

An antenna sub-assembly of 0.1 λo thickness with a low dielectric constant

(εr: 2.2) is used to mitigate the impact of surface waves on overall scanning

performance [59]. A set of simultaneous and transcendental equations where
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Figure 2.11: Diagram of surface waves in a dielectric surface (courtesy of J.
Salazar).
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Figure 2.12: (a) Graphical illustration of the propagation constant. (b) Grat-
ing lobe diagram with surface waves showing.

used to estimate the propagation constant of surface waves (2.22) in the an-

tenna sub-assembly is given by:

(kcd)2 + (hd)2 = (kod)2(εr − 1) (2.20)

kcd+ tan kcd = hdεr (2.21)
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Figure 2.13: (a) Grating lobe diagram showing calculated scanning perfor-
mance for the proposed antenna array, (b) simulated active reflection coeffi-
cient as a function of scan angle at 9.5 GHz for H- (—) and V-ports (- - -).

where h2 = β2 − k2
o , and d represents the substrate thickness of the antenna

subassembly.

βsw/ko =
√

(εrk2
o − k2

c )/ko (2.22)

An example of the graphical representation of the solutions of the propaga-

tion constants and the location of the scan blindness can be seen in Figure 2.12.
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The intersection of the solutions for a TM0 means that only one surface wave

propagation mode is excited. The propagation constant value of this mode is

then calculated to determine if a scanning blindness will be introduced.

Figure 2.13(a) shows the graphical solution for the surface wave propaga-

tion constant (βsw/ko) for the dominant mode (TM0) in both polarizations.

Higher-order modes for surface waves and parallel plate modes are not excited

using this antenna. For the antenna sub-assembly, the normalized propagation

constant for the dominant mode (βsw/ko) is 1.07, producing a scan blindness

at 67.2◦ for the H-pol and V-pol in the respective E-planes (see Fig. 2.13(b)).

Numerical simulation using an infinite array approach in HFSS validates the

theoretical estimation of the scan blindness in the antenna sub-assembly. The

scan blindness was found to be around 67◦ in the E-plane for both H- and V-

polarizations. The active reflection coefficient (Γa) versus the scan angles for

the E-, D-, and H-planes are represented in Figure 3.17b. Using the acquired

active reflection coefficient, a calculation of a gain variation (Go(1− |Γa|2)) of

1 dB was obtained for the scanning range of ±45◦.

2.4.4 Edge Effects/Diffraction

Edge effects are a widely known phenomena in the antenna and phased array

antenna community. It has been observed how the diffracted fields affect the

antenna element patterns [13]. However, it is fairly complicated to analyze and

quantify and therefore, little to no work has been done to quantify the effects

analytically, especially for cross-pol. However, it is a substantial effect to take

into account under many scenarios, like that shown in Figure 2.14, where mul-

tiple sources of discontinuity can be present in a phased array configuration.

In this specific scenario where there is interest in low cross-polarization anten-
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Figure 2.14: A representation of currents generated by internal gaps between
subarray panels.

nas, diffraction can play a very critical goal in assuring good cross-polarization

performance. Furthermore, edge diffractions affect the elements impedance re-

sponse as it gets to closer locations to the edges. Mutual coupling calibration

techniques are affected once the edges are taken into account. Figure 2.15

shows how some particular edges show some unwanted edge effects, which due

to diffraction increases the variability in the magnitude estimations mostly

[23], [60], [61].

Furthermore, besides calibration issues related to the mutual coupling of

the elements along edges, diffracted fields play an important role in the per-

formance of the active element pattern. As seen in Figure 2.16, very high

cross-polarization levels occur with slight movement of the element along the

edges and is highly dependent on the location of the element with respect to

these edges [62].
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(a)

(b)

Figure 2.15: The park and probe (P&P) results are compared to the ones ob-
tained using the mutual coupling-based (MC) technique for different subarray
configurations. (a) Shows the estimations for the central elements while (b)
shows the inclusion of the elements at the edges [60].

Figure 2.16: 3x3 MPA array showing the element patterns at each position of
the array.
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Figure 2.17: Diagram of a phased array antenna with its independent sources
of excitation Vn with element separation d. (courtesy of J. Salazar).

2.5 Array Antenna Fundamentals

Weather PARs require agile beam steering as well as the need to control im-

portant array parameters in order to reduce sidelobe levels while mantaining

narrow beamwidth and high gain, avoid scanning nulls for wide angle scan-

ning and wider bandwidths for flexibility in signal processing techniques. This

requires control at the element level of the array where amplitude and phase

are varied independently as well as a consideration of the array performance

at the element level including all of the considerable components that have to
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be taken into account to calculate the desired array pattern and excitations at

the element level. In this section the fundamental concepts in the calculation

of a phased array antenna are discussed.

Having discussed mutual coupling and edge effects and the contribution

they have towards the element pattern we can get into what the array calcula-

tions entail. A phased array antenna is the arrangement of radiating elements

with the ability to change the phase at the element excitation so they add

coherently and can point the beam in a certain direction (θ0,φ0). An array

pattern is the superposition of embedded element radiation patterns with their

respective amplitudes and phases. This gives the ability for the antenna to

be directional and steer the beam, as well as configure a variety of amplitude

distributions in order to reduce sidelobe levels.

It has been shown that the array pattern is a function of the active ele-

ment patterns and the individual excitation coefficients at the terminal of the

array. Furthermore, the active element pattern is a function of the scattering

parameters of all the ports in the array and the isolated pattern [22], [56],

[63]. Figure 2.17 shows a representation of a phased array antenna with in-

dependent excitation sources containing phase shifters and attenuators. Each

element is excited with a terminal voltage V0. Hence, the electric field radiated

by a single isolated element can be expressed as:

E0(r, θ) = V0f(θ)e
−jkr

r
(2.23)

where f is the polarized field of the element in space and k is the propagation

constant equal to 2π/λ. For a linear array of N elements, the total radiated

field of the array is then
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EA(r, θ) = f(θ)e
−jkr

r

N∑
n=1

Vne
jk(n−1)d sin θ (2.24)

where Vn is the total voltage at the nth antenna element expressed as

Vn = V +
n + V −n (2.25)

In order to scan the array to the angle θ0, the incident voltage V +
n at the

nth terminal is

V +
n = V0e

−jk(n−1)d sin θ0 (2.26)

As previously discussed in Section 2.4.2, an array of antennas has an input

impedance at the termination of each antenna. Hence, the set of N antennas

has incident and reflected voltages that are characterized by an N × N scat-

tering matrix. The S-parameters for each element with respect to the mth

element can be written then as

Smn = V −m
V +
n

∣∣∣∣∣
V +
k

=0 for k 6=n
(2.27a)

V −m = V +
n

N∑
n=1

Smn (2.27b)

Then at the mth element, where all the elements would be excited, the active

reflection coefficient Γam can be expressed as
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Figure 2.18: Active (—) and isolated (- - -) element pattern of [22].

Γam(θ0) = V −m
V +
m

=
N∑
n=1

Smne
−jk(n−m)d sin θ0 (2.28)

The most accurate representation of the array pattern is the inclusion of all

of the effects that are present in the array (see Figure 2.18). These are mutual

coupling, edge effects, and any other reflections or scattering sources in the

array’s design. An isolated radiation pattern f i is generally used as a predictor

of the overall phased array performance, however it does not include all the

aforementioned characteristics that are crucial for the most accurate repre-

sentation of the array’s efficiency, scanning capabilities, and cross-polarization

levels, which are crucial in this work. Usually, the array elements are passive

and therefore when all other elements are terminated except the mth element

the active element radiation field, otherwise called here the embedded element

field can be expressed as
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Ee
m(θ) = f i(θ)e

−jkr

r
V0

[
1 +

N∑
n=1

Smn
ejk(n−1)d sin θ

ejk(m−1)d sin θ

]
ejk(m−1)d sin θ (2.29)

where the embedded element pattern is

f em(θ) = f i(θ)
[
1 +

N∑
n=1

Smn
ejk(n−1)d sin θ

ejk(m−1)d sin θ

]
(2.30)

And so, the most complete representation of an array pattern is

ETotal(r, θ, φ) = e−jkr

r

M∑
m=1

amf
e
m(θ)ejk(m−1)d sin θ (2.31)

where am is the excitation amplitude at the mth element.

2.6 Summary

To this point all of the relevant topic’s fundamentals have been discussed.

The polarization definitions for PAR have been presented giving context to

the necessity of accurate measurements to provide the required polarimetric

parameters for the better forecasting of weather phenomena. Hence, it is

important to address challenges in the design of phased array antennas that

are discussed. Those included the limitations and structural challenges of

radiating elements. The selection of an appropriate radiating element has

to take into account many aspects such as, efficiency, bandwidth, polarization

purity, and other radiation performances such as gain. The latter mentioned is
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of importance to the scanning capabilities of the array. Scanning performance

is then is expressed as a direct effect of the mutual coupling parameters and

the overall radiation performance of the antenna elements in the array. This is

proven with the run through the phased array antenna fundamentals which is

essentially a superposition of all the elements radiation performance and the

interactions between them.
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Chapter 3

Edge Diffraction Theory

3.1 Introduction

Diffraction, in electromagnetic theory, is a local phenomena that occurs when

a field is introduced to a discontinuity over a conductive surface. It involves

the spreading of electromagnetic energy of a given source when incident upon

the discontinuity in the forma of a vertex, corner, or wedge, see Figure 3.1.

The diffracted field’s characteristics are dependent on the geometry at the

point of diffraction and the amplitude, phase, and polarization of the incident

field at the point of diffraction.

This spreading of energy can be a detrimental factor for high-performance

radiating elements and active phased array antenna performance. Different

methods can aid in the prediction of diffracted fields. However, with the chal-

lenges that come when analyzing electromagnetic problems is the evaluation of

scattered fields and its unknowns. Diffracted fields are in all regions of space

(see Figure 3.2), and is the only component present in the shadow region (III),

since it lies below the reflected and incident boundaries.

Of the most widely used methods that provide accurate numerical solutions

for scattered fields for antenna patterns today are full-wave analysis methods,
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Incident Ray

WedgeEdge

Plane of

diffraction

Figure 3.1: Diffraction by a wedge with a straight edge.

which include the method of moments (MoM) and the finite element method

(FEM). These methods are proven to provide accurate representation of the

scattering and diffraction of electromagnetic radiation. However, these full-

wave methods require a lot of computational time and memory resources,

especially when electrically large objects are considered. This is particularly

the case with phased array antennas, where antennas are placed over larger

ground planes and have scalable the applications that involve the placement

of several panels in order to increase the size of the array.

For electrically large geometries, high-frequency asymptotic solutions to

Maxwell’s equations have been commonly preferred methods [64]. Two widely-

adopted techniques are GO and PO and their extensions to account for diffracted

fields. PO is an integral method involving the numerical calculations of in-

duced currents over an illuminated perfect electric conductor (PEC) plane.
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Source

Figure 3.2: Ray tracing of a source to the point of diffraction and the point of
observation with respective regions and fields that are present. The regions are
separated by the reflected shadow boundary (RSB) where the reflected rays
stop to exist and the incident shadow boundary (ISB), where only diffracted
fields are present below it [25].

Therefore, PO provides an approximation to the surface fields of the plane

and gives an accurate representation of the radiation pattern close to the

caustic regions of the reflective surface. However, when edge contributions are

of close vicinity and wider angles are of interest the physical theory of diffrac-

tion (PTD) provides corrections for PO outside of these caustics regions [65].

The resulting field would be the superposition of the PO field generated by

the currents induced on the radiating object and the corrections produced by

the diffracted component for edged bodies regarded as the “edge wave field”

[27].

About the same time PTD was developed, a similar approach, the geo-

metrical theory of diffraction (GTD) is presented as an extension to GO for

a generally closed-form solution without the need of integrations [16]. GTD,

as an extension of GO, adds the diffracted ray components missing from the

direct, reflected, and refracted rays of a GO solution. GTD is later extended
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to the uniform theory of diffraction (UTD), which, as the name implies, pro-

vides uniform solutions with smoothened transitions around singularities in

the calculation of the diffracted fields and is to be used throughout this work.

GTD/UTD, can also be used to account for multiple diffraction easily in the

form of higher-order multiple wave interactions. This is useful when analyzing

multiple edges close to a radiating object [27].

Some important assumptions made for the purposes of these studies is the

use of flat, perfectly conductive surfaces and straight edges where the fields

are incident upon. No surface impedance is taken into account, if so, surface

wave analysis would then be needed to be applied into the diffraction models

study, especially for phased array architectures where surface waves evidently

impact scanning performance and can potentially amplify the effects caused

by diffracted fields.

This chapter will discuss GO solutions and total field calculations for sev-

eral radiating sources in order to understand direct and reflected rays as well as

polarization characteristics. These cases will include plane waves, monopole,

and microstrip patch antenna (MPA). Plane waves give a general introduction

to polarized cases of incident and reflected fields, while the monopole and MPA

are more practical cases for different scenarios. To the mentioned GO exam-

ples the UTD will be applied in order to understand how the diffracted fields

behave under certain scenarios and how they are applied to the specific cases.

Furthermore, higher-order techniques will be presented, specifically the equiv-

alent current method (ECM) and how they will help complete the proposed

analytical model of this work.
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3.2 Geometric Optics

In diffraction theory, GO is used to represent what the total radiation pattern

of an antenna would be once placed over an infinite conductive surface. In all

the cases to be shown, the ground plan is assumed to be a perfect conduc-

tor and will have a zero impedance surface. Therefore, only the direct and

reflected components are to be considered in the calculations. These compo-

nents are characterized by being of hard or soft polarization (see Figure 3.3).

Soft polarization is referent to an electric field component that is tangential

to the edge and hard polarization to an electric field component normal to

the edge. To obtain the GO pattern of both cases, the direct fields from the

radiating element and the reflected fields from the ground plane are added.

EGO = EDirect + EReflected (3.1)

where the direct components (EDirect) are coming directly from the antenna

source and the reflected components (EReflected) are reflections at the conduc-

tive surface, as seen in Figure 3.2. Even though radiated fields do exist in

the space all around a wedge, these calculated components do not. To have a

clear view of where these fields are present, the space around the wedge will

be divided into three sections, as seen in Table ??.

Table 3.1: Regions around a PEC wedge and their existing components.

Region Components Angular Space
I Direct + Reflected + Diffracted 0 ≤ φ ≤ π − φ′
II Direct + Diffracted π − φ′ ≤ φ ≤ π + φ′

III Diffracted π + φ′ ≤ φ ≤ nπ
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Figure 3.3: A plane wave of (a) hard and (b) soft polarization incident upon
a PEC wedge.

3.2.1 Plane Wave

As a basic example, a plane wave incident upon a wedge is studied. This

plane wave can be perpendicular or parallel to the plane of incidence. These

polarization cases are respectfully denoted as soft and hard polarizations (see
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Figure 3.4: Normalized GO pattern solution in dB for a plane wave with (a)
hard and (b) soft polarizations with incident angle φ′ = 40◦ upon a PEC wedge
at distance ρ = λ.
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Figure 3.3). Due to boundary conditions, different equations are used to rep-

resent the respective GO pattern and to calculate the diffracted fields, which

will be discussed in the following section. Each plane wave of unit amplitude

will be incident upon a two-dimensional wedge and its GO pattern is calcu-

lated by means of contour integration and a method of steepest descent [25]

and results in (3.2).

EGO
h,s =


ejkρ cos (φ−φ′) ± ejkρ cos (φ+φ′) 0 ≤ φ ≤ π − φ′

ejkρ cos (φ−φ′) π − φ′ ≤ φ ≤ π + φ′

0 π + φ′ ≤ φ ≤ nπ

(3.2)

The top line of the equation represents region I, the incident and reflected

components are added for the hard polarization case and subtracted for the

soft polarization case. As for region II, only the incident component is con-

sidered and in region III there is zero contributions from GO. The normalized

radiation patterns for both polarization cases are shown in Figure 3.4 for an

incidence at a 40◦ angle (φ′) to the wedge. It is worth knowing that if the in-

cident angle approaches 0◦ then the image (reflected) component cancels with

the incident and produces zero pattern for a soft polarization. The next section

will introduce the practicality of the monopole in this study. The monopole

produces purely hard polarized radiation with equal magnitude along the az-

imuthal cut. This helps understand better what effects does hard diffraction

have on the performance of an antenna that is placed directly on top of a

ground plane.
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Figure 3.5: (a) Representation of GO rays for the case of a λ/4 monopole
with respective direct and reflected fields. (b) Normalized GO pattern of the
monopole over an infinite ground plane.

3.2.2 Monopole

A useful example to represent an object that uniformly illuminated the edges

of a ground plane is the quarter-wavelength (λ/4) monopole. The monopole

has been a widely used antenna for mobile communications. Essentially it is a

wire antenna placed vertically over a ground plane. Due to image theory, the

vertically placed line of current will be added with its image along the ground

plane, it is an equivalent of a half-wavelength (λ/2) dipole for the region above

the ground plane (−90◦ < θ < 90◦). Therefore, the expression would be the

same as for a half-wavelength dipole (3.3) [51] except that the values are to be

zero for anything below the ground plane, as expressed in (3.4).

Eθ w jη
kI0e

−jkr

4πr sin θ
{∫ 0

−l/2
sin

[
k

(
l

2 + z′
)]

ejkz
′ cos θdz′

+
∫ l/2

0
sin

[
k

(
l

2 − z
′
)]

ejkz
′ cos θdz′

}
(3.3)
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EGO
θ (r, θ) =


E0

[
cos (π2 cos θ)

sin θ

]
e−jkr

r
−π/2 ≤ θ ≤ π/2

0 −π/2 > θ > π/2
(3.4)

In the GO pattern of the antenna, only the direct, and reflected components

are shown in Figure 3.3. The antennas are assumed to be on top of an uncoated

ground plane, therefore, refracted components are generally not included in

these cases.

3.2.3 Microstrip Patch Antenna

The microstrip patch antenna (MPA) is widely used for high-performance ap-

plications and is common in communications and radar technology. It is com-

posed of a dielectric material in between a strip of conductor and a ground

plane. Unlike the end-fire radiation produced by a monopole, the MPA pro-

duces a maximum normal to the surface of the patch for broadside radiation.

The fields formed under the patch can be modeled as a cavity bounded by per-

fect magnetic walls, where higher-order resonances can be calculated. These,

otherwise called higher-order modes, contribute to the overall electric field ra-

diation pattern produced by the MPA and can be one of the main causes of

cross-polarization. Using (3.5) and (3.6) one can calculate the electric fields

bounded under the patch. These fields are characterized by different propa-

gating modes.

In the general case, the MPA is usually composed by a dominant TM01

mode and a TM20 mode in the orthogonal dimension of the patch, or along

the dimension W, which is usually considered to be the cause of cross-polar

radiation as seen in Figure 3.7. Besides the TM01 and TM20 modes, any other

higher-order modes have little to no contribution. For this study, only these
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Figure 3.7: Orientation of electric fields bounded by the cavity produced by
the two main propagating modes E01 and E20.

two will be considered for the analysis to represent co- and cross-polar fields

and how they interact with edges and the diffraction fields produced by them.

Each mode will be analyzed independently. The equation for calculating the

propagating field modes Ez
mn and respective coefficients Cmn under the patch

are given by [66] as
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Ez
mn =

i∑
m=0

j∑
n=0

Cmn cos
(
mπ

W
x′
)

cos
(
nπ

L
y′
)

(3.5)

Cmn =
(
ε0mε0n
WL

) cos
(
mπ
W
xf
)

cos
(
nπ
L
yf
)

k2 − k2
mn

j0

(
mπd

2W

)
(3.6)

where k2 = εr(1 − jδ)k2
0, εr being the dielectric constant under the patch,

δ is the dielectric loss tangent, k0 is the propagation constant, and xf and

yf resembles the position of the feed. e0m = 1 for m = 0 and 2 for m 6= 0

k2
mn = (mπ/W )2 + (nπ/L)2 and j0 = sin x/x where d is the “effective width”

of a uniform strip of a source of current in the z-direction, where for the case

of a coax, the authors in [66] use five times the diameter of the coaxial feed

cable center conductor.

The design parameters for the dimensions of the cavity are determined

using the equations found in [51] and other text books for the design of MPAs.

Having the field distribution underneath the patch, the fields at each edge

of the cavity is used to calculate the radiated fields by the apertures shown

in Figure 3.6. In the principal planes, slots 1 and 3 determine the fields for

the TM01 mode, while 2 and 4 are used to calculate the fields for the TM20

mode. First, the fields at each edge is considered uniform due to the boundary

conditions applied to the cavity model, where each boundary is assumed to be

a perfect magnetic conducting boundary where all fields are perpendicular to

the electric conducting boundaries in the top and bottom. Hence, a magnetic

current density is calculated at the apertures by

M i
s = −2n̂× âzEz (3.7)
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where n̂ is the unit normal to the field perimeter for each slot;

M1
s = −2(−ây)× âzEz

∣∣∣
y′=0

= 2âxCmn cos
(
mπ
W
x′
)

M3
s = −2(ây)× âzEz

∣∣∣
y′=L

= −2âxCmn cos
(
mπ
W
x′
)

cos (nπ)

M4
s = −2(−âx)× âzEz

∣∣∣
x′=0

= −2âxCmn cos
(
nπ
L
y′
)

M2
s = −2(âx)× âzEz

∣∣∣
x′=W

= 2âxCmn cos
(
mπ
L
y′
)

cos (mπ)

Now that the current densities are determined, the radiated fields are rep-

resented by the sum of the fields radiated by all four slots, where two opposing

slots account for most of the radiated fields. In this study slots 1 and 3 ac-

count for the dominant mode (TM01) that comprises the linearly polarized

fields in the y-direction and the higher-order mode (TM20) using slots 2 and 4

to account for the cross-polarization found on most conventional rectangular

microstrip patch antennas (RMPAs).

A similar procedure used for calculating the fields radiated by an aperture

[51] is applied to each slot of the RMPA. Using spatial factors and disregarding

components in z because all current densities are at either x or y

Lθ =
∫∫

S
[Mx cos θ cosφ+My cos θ cosφ]ejkr′ cosψds′ (3.8)

Lφ =
∫∫

S
[−Mxsinφ+My cosφ]ejkr′ cosψds′

The total electric fields for the respective slot (i) can be written as
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Ei
θ = −jke

−jkri

4πri
Liφ (3.9)

Ei
φ = jke−jkri

4πri
Liθ

Simplifying integration for both Mx and My currents

Lx =
∫ h

0

∫ L
2

−L2
cos

(
mπ

W
x′
)
ejk(x′ sin θ cosφ+z′ cos θ)dx′dz′ (3.10)

Ly =
∫ h

0

∫ W
2

−W2
cos

(
nπ

L
y′
)
ejk(y′ sin θ sinφ+z′ cos θ)dy′dz′

The resulting Eθ field expression for each slot is

E1
θ = 2Cmn

jke−jkr1

4πr1
(sinφ)Lx (3.11)

E3
θ = −2Cmn

jke−jkr3

4πr3
(sinφ cos(nπ))Lx

E2
θ = −2Cmn

jke−jkr2

2πr2
(cosφ cos(mπ))Ly

E4
θ = 2Cmn

jke−jkr4

2πr4
(cosφ)Ly

The resulting Eφ field expression for each slot is
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Figure 3.8: Calculated patterns for the rectangular microstrip patch antenna
in (a) E- and (b) H-plane for co- ( — ) and cross-pol ( - - - ).

E1
φ = 2Cmn

jke−jkr1

4πr1
(cos θ cosφ)Lx (3.12)

E3
φ = −2Cmn

jke−jkr3

4πr3
(cos θ cosφ cos(nπ))Lx

E2
φ = 2Cmn

jke−jkr2

2πr2
(cos θ sinφ cos(mπ))Ly

E4
φ = −2Cmn

jke−jkr4

2πr4
(cos θ sinφ)Ly

where r1 = r, r3 = r − L sinφ sin θ, r2 = r −W sin θ cosφ, and r4 = r. The

corresponding patterns for the dominant mode (co-pol) and the higher-order

mode (cross-pol) will be represented mainly by the addition of apertures 1, 3,

2, and 4, respectively. The patterns produced by the equations are shown in

Figure 3.8.
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3.3 Geometrical Theory of Diffraction

As an extension to GO, the geometrical theory of diffraction (GTD) intro-

duces diffracted rays, which are added to the total representation of the field.

Diffracted rays are produced when the rays known from GO are incident upon

an edge, corner, or vertex of a surface boundary. Analogous to how reflection

coefficients are applied to incident fields, diffraction coefficients, introduced

by the GTD method, provide a relation between the incident field and the

diffracted fields. The diffracted field seen at an observation point (s) in space

has the form

ED (s) = Ei(QD) · D̄A (s′, s) e−jks (3.13)

where D̄ is a dyadic, which is analogous to the reflection coefficient used for an

incident electric field (Ei) with parallel or perpendicular incidence upon a the

diffraction point (QD). A is the spatial attenuation factor and is dependent

on the geometrical nature of incidence at the point QD.

Both polarizations are denoted as soft and hard polarizations. Soft po-

larization is identified as a wave that is polarized parallel to a conductive

surface and hard polarization as a wave that is perpendicular to the conduc-

tive surface. When each polarized field is incident upon a wedge, a respective

diffraction coefficient is applied. With the addition of the diffracted field, it is

now possible to provide an approximate representation of the total field (3.14)

around all regions including the shadow region where, according to GOs, has

no field.

ETotal = EDirect + EReflected + EDiffracted (3.14)
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In accordance to the GTD, correction factors and asymptotic solution for

angles other than normal incidence (β′0 6= 90◦) are derived [67]. Furthermore,

introducing the dyadic coefficient D̄ as a diagonal matrix the polarization of

the scattered field is related to the polarization of the incident wave. This

dyadic coefficient is found by introducing asymptotic high-frequency methods

and is shown to be practical for applying GTD to antenna and other three-

dimensional scattering problems with edges [67].

According to GTD, the diffracted electric field Ed can be obtained by:

Ed(s) = Ei(QD) · D̄ (L;φ, φ′;n; β′0)A(s′, s)e
−jks

s
(3.15)

where

L is the is the distance parameter

A is a spatial attenuation factor

QD is the point of diffraction

φ is the angle perpendicular to the edge of incidence

φ′ is the angle perpendicular to the diffraction

n determines the wedge angle

β′0 is the oblique incident angle to the edge of incidence

s′ is the point toward the edge of diffraction

s points from the point of diffraction to the point of observation

Incident and diffracted electric fields can be solved as individual compo-

nents of parallel and perpendicular polarizations. Therefore this equation can

be written as:
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ED
φ (s)

ED
θ (s)

 = −

Ds 0

0 Dh


Ei

φ(QD)

Ei
θ(QD)

A(s′, s)e−jks (3.16)

where the diagonal components Dh and Ds are the diffraction coefficients for

the hard and soft boundary conditions, respectively. The respective hard

diffraction coefficient and soft diffraction coefficient are then applied to both

hard and soft polarized electric field components respectively, seen in Fig-

ure 3.3.

The coefficients depend on trigonometric functions involving a Fresnel in-

tegral, which is used as a correction factor for the transition regions along

the incident shadow boundary and reflection shadow boundary. These tran-

sition regions produce singularities which generate errors and become more

pronounced as the edge of diffraction is closer to the source. In order to

correct for these inaccuracies and extend the formulation of the asymptotic

expansions for a more general type of illumination of the wedge the uniform

theory of diffraction (UTD) is introduced [15].

3.3.1 Uniform Theory of Diffraction

Previous high-frequency methods to calculate the fields in the shadow region,

where the GO is zero to account for non-vanishing fields, produce discontinu-

ities at the shadow and reflection boundaries. However, fields in these region

do exist and have a continuous nature. As such, sources closer to the edges

must be excluded because the GTD approach is no longer valid. Therefore, the

diffracted field solution must provide a correction for the transition between
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regions illuminated by the source and shadowed by the edge [15].

UTD is introduced to smoothen the results obtained by the high-frequency

method where it shows discontinuities in vanishing points between the shadow

and reflection boundaries. In reality, there are fields to exist in these bound-

aries, therefore, the UTD is a uniform asymptotic method which introduces

transition function expansions in its diffraction coefficients (Di, Dr).

Diffraction coefficients for incident and reflected diffraction for oblique in-

cidence including corresponding expanded Fresnel functions for bounding dis-

continuous boundaries are:

Di (L, φ− φ′, n, β′0) =− e−jkπ/4

2n
√

2πk sin β′0

·
({

cot
[
π + (φ− φ′)

2n

]
F
[
kLg+ (φ− φ′)

]
+ cot

[
π + (φ− φ′)

2n

]
F
[
kLg− (φ− φ′)

]})
(3.17a)

Dr (L, φ+ φ′, n, β′0) =− e−jkπ/4

2n
√

2πk sin β′0

·
({

cot
[
π + (φ+ φ′)

2n

]
F
[
kLg+ (φ+ φ′)

]
+ cot

[
π − (φ+ φ′)

2n

]
F
[
kLg− (φ+ φ′)

]})
(3.17b)

where F is the Fresnel transition function

F (X) = 2j
√
XejX

∫ ∞
√
X
e−jτ

2
dτ (3.17c)
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where (3.17c) is used, along with functions g− and g+, to relate the angu-

lar separation between the observation point and the incident and reflection

shadow boundaries [15], [25]. These functions introduce integral values of im-

portance in order to provide non-abrupt changes as a function of φ near the

boundaries.

There are two main polarizations that are assumed to be incident upon

an edge, as seen in Figure 3.3, and for each case a diffraction coefficient is

applied in (3.16). Depending on the polarization and boundary conditions of

the incident wave with respect to the wedge, equations (3.17a) and (3.17b)

then determine the soft and hard diffraction coefficients, seen in (3.16), as:

Dh (L;φ, φ′, n; β′0) = Di (L, φ− φ′, n, β′0) +Dr (L, φ+ φ′, n, β′0) (3.18a)

Ds (L;φ, φ′, n; β′0) = Di (L, φ− φ′, n, β′0)−Dr (L, φ+ φ′, n, β′0) (3.18b)

To verify that these coefficients are related to boundary conditions and

image assumptions, whenever the wave is incident at grazing incidence φ′ = 0◦

both incident and reflected diffraction coefficients are the same. Therefore,

(3.18b) and (3.18a) become 0 and 2Di,r respectively. This means that incident

field that is parallel (or of soft polarization) to the perfectly conductive surface

cancels itself out with its image and the opposite is true for the perpendicular

(or hard) polarization.
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Figure 3.9: Incident and reflected diffracted fields from a plane wave source
with incidence angle φ′ = 40◦ upon a flat half-plane (n = 2).

3.3.2 Diffracted Fields

The total field of an antenna element placed in a finite ground sheet will be

the superposition of the GO pattern and the diffracted fields. Diffracted fields

exist in all space surrounding a wedge where the wave of an arbitrary source

is incident upon. The relation between the incident wave and the diffracted

wave is determined by diffraction coefficients. These coefficients will mainly

be dependent upon the geometry of the wedge, the distance at which the

wave travels to reach the edge and the angle of incidence. As previously men-

tioned, the incident and reflected diffraction coefficients, expressed in (3.17a)

and (3.17b) respectively, have singularities that are corrected using transition

functions (3.17c) and their extensions when the observation is close to the

69



incident shadow boundary (ISB) and reflection shadow boundary (RSB).

Vi,r (ρ;φ, φ′, n; β′0) = Di,r (ρ;φ∓ φ′;n; β′0) e
−jkρ
√
ρ

(3.19)

Vs,h (ρ;φ, φ′, n; β′0) = [Di (ρ;φ− φ′;n; β′0)∓Dr (ρ;φ+ φ′;n; β′0)] e
−jkρ
√
ρ

(3.20)

The fields generated by the diffraction coefficients are shown in Figure 3.9.

This diagram shows how the diffracted fields are seen with respect to the

surface of the wedge at the distance to observation point (ρ) and an incident

angle from the face of the wedge to the source (φ′). The incident diffracted field

(Vi) and reflected diffracted field (Vr) are calculated with the UTD method

and shows the smoothened discontinuity at both ISB at π − φ′ and RSB at

π + φ′, respectively. These fields will provide the corrections to the transi-

tions between boundaries necessary to represent the total electric fields of a

source. For instance, the hard diffraction coefficient (Dh), in (3.18a), will pro-

vide the missing components to a parallel polarized wave upon the incident

plane. Therefore, adding to the GO solution, shown in Figure 3.4a the missing

diffracted field components, resulting in the pattern seen in Figure 3.10a. In

a similar manner the field for the perpendicular polarization case is shown in

Figure 3.10b. From these results it is easy to appreciate how the boundary

conditions work at φ = 0◦ and φ = nπ where the soft polarization approaches

an amplitude of 0 at the boundary or PEC surface while the hard polarization

does not.

The cases shown here are for a straight wedge of infinite length. In order
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Figure 3.10: Normalized total field ( — ) and GO solution ( - - - ) of an
incident plane wave in (a) hard (b) soft polarizations with incident angle of
φ′ = 40◦ upon a 45◦ wedge at distance ρ = λ.

to evaluate the effects that these fields have on the pattern from a source radi-

ation, the parameters that determine the behavior of change in the diffraction

coefficients are explored. Since the diffraction coefficient is inherently a com-

plex value, the effects it has on the overall pattern will be in amplitude and

phase. The variation can be due to the different parameters the diffraction
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Figure 3.11: Reflected diffracted fields for different source positions ρ and a
fixed incident angle of φ′ = 40◦ and a wedge angle of n = 2.

coefficient is dependent on, the diffracted field can vary with changing the

distance from the source to the edge, the angles at which the wave is incident

upon the edge, and the angle of the wedge.

The amplitude of the reflected diffracted fields at different distances (ρ) can

be viewed in Figure 3.11. It shows a maximum at the angle of incidence with

respect to the RSB at π−φ′, while the maximum of the incident diffracted field

will be at the ISB at π+φ′. The total of the reflected and incident diffracted is

shown in Figure 3.12. As the diffracted field is formed farther from the source,

the spreading is reduced. However, it will introduce phase alterations which

produces more ripples in the total radiation pattern. Figure 3.13 shows how

the pattern for both hard and soft diffraction coefficients changes with length

towards the edge. A noticeable difference can be seen in the shadow region

(π+φ′), especially for the hard polarization case (see Figure 3.13a), where the

reduction in amplitude can be seen as the distance to the source is increased.
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Figure 3.12: Incident diffracted fields for (a) soft and (b) hard diffraction for
different source distances ρ and a fixed incident angle of φ′ = 40◦ and a wedge
angle of n = 2.
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Figure 3.13: Total field of an incident plane wave for different distances in
(a) hard (b) soft polarizations with incident angle of φ′ = 40◦ upon a flat
half-plane where n = 2.

In both polarization cases, the effect the diffracted fields have on the pattern

is adding ripples to the pattern. Meaning, edge can affect the magnitude of

the individual source depending on its position along a ground plane.

Furthermore, analyzing how the incident angle approaches grazing inci-

dence (φ′ = 0◦) can give a view as to how the diffracted fields interaction with

the source varies. Figure 3.14 shows the total hard and soft diffracted fields

that would be added to the source GO solution to get the total representation
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Figure 3.14: (a) Soft and (b) hard diffracted fields of an incident plane wave
upon a flat half-plane at distance ρ = λ and a wedge angle of n = 2.

of the electric field. Here, as the incident angle φ′ approaches grazing, proves

what was mentioned before, that for a hard polarization case the diffraction
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Figure 3.15: Total field of an incident plane wave in (a) hard (b) soft polar-
izations with a fixed distance of ρ = λ upon a flat half-plane where n = 2.

coefficients would be equal, hence when added would result in 2Vi,r in case of

hard diffraction and 0 in the case of soft diffraction. This would comply with

boundary conditions where a tangential component to the edge would be zero

when no distance is between it and the PEC boundary and twice the value

when it is perpendicular to it. With changing incidence, both polarization

cases experience different conditions where the pattern changes as the tran-

sition region between both RSB and ISB narrows, resulting in 0 for the soft
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cases seen in Figure 3.14b and 3.15b.

3.4 Analytical Model

Having discussed the theory behind diffracted fields and how they are calcu-

lated, this section will discuss the analytical tools to build the proposed model.

One of the main objectives with the use of an analytical model is to capture

the effects diffracted fields have on an antenna element’s radiation performance

placed in a finite array environment. In order to implement this, a method

that is dependent on the location of the element with respect to the edges will

provide enough information of the diffracted fields produced in space.

The proposed analytical model will be composed of a combination of tech-

niques. The two-point diffraction will lay down the basic parameters that will

be useful to calculate the diffracted fields with respect to the location of the

source along the sheet or conductive surface. As an extension of this, the

equivalent current method, can represent each edge of the finite array as a

current source induced by each element’s diffracted fields and provide a view

of the element’s radiation field in all space around it. Hence, this method has

the ability to analyze the fields in all of its components as well as principal

and non-principal cuts.

3.4.1 Two-point Diffraction Method

The two-point diffraction is a method that is useful to calculate how diffraction

from two points over a finite ground plane interacts with the radiation pattern

from a source between them. This is what would usually happen when dealing

with a finite phased array, where the elements will have two edges on either

side of the ground plane for each azimuthal (φ) cut. The main element of this
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Figure 3.16: Total field of a (a) centered line source placed between two points
of diffraction with (a) hard and (b) soft polarizations.

method that helps understand the implementation of the proposed method of

this work is the impact that the distance to the edges has on the total radiation

pattern of a given source. This variability is helpful to identify different cases

of asymmetrical placement along the ground plane, hence, providing insight

as to how each element’s radiation pattern will look like with respect to its

position about the edges of a finite ground plane.

In order to introduce a more practical scenario, the use of a two-point

diffraction calculation can provide a radiation pattern where an antenna is

met by two edges on either side. This is what is usually seen in practice when
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Figure 3.17: Total field of an (a) off-centered line source placed between two
points of diffraction with (a) hard and (b) soft polarizations.

fabricating an antenna that is placed over a flat conductive surface as a ground

plane.

Figure 3.16 shows the total field calculations for a line source with either

soft or hard polarization placed over a 3λ sized ground plane. The analysis

involves the superposition of the electric fields coming from the source with

the two points at either side of the ground plane. In this manner, the total

radiation pattern will be representative of a cut along the points of diffraction

and the source. This brings the ability to place the radiation source any

place between these two points, see Figure 3.17. Therefore, adds an additional
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capability for studying elements at arbitrary positions along a ground plane.

It is evident that positioning the antenna at different points in between

the edges produces different radiation patterns which translate to changes in

phase and amplitude. This method can then be used to study the effects the

edges have on individual element’s gain along a phased array antenna.

3.4.2 Equivalent Current Method

The previous equations are sufficient for the co-polar components. To obtain

the other component contributions coming from currents aligned in the oppo-

site direction and the interaction along all the edge must be considered as a

line of current in space, as shown in Figure 3.18. The ECM’s approach is to

model equivalent currents along the edges of the ground plane (x, y) plane,

as shown in Figure 3.19, producing both far-field components using vector

potentials.

A magnetic current Im is used to produce the diffracted fields from such

incident Eθ fields [25].

Imx,y = −ηH i
x,y(QD)

√
8π
k
Dhe

−j π4 (3.21)

H i
x,y being the incident magnetic field at any point along the edges along the

x-axis and y-axis. Once the magnetic current is determined for each point

along the edge, the radiation integrals using vector potential F for a magnetic

current lines are calculated [25].

L =
∫

Imx,yejks cosψ dl (3.22)
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Figure 3.18: Equivalent current modeled by the diffraction along the wedge.

F = εe−jkR

4πR L (3.23)

 ED
φ = jωηFθ

ED
θ = −jωηFφ

 (3.24)

Now that both components are determined, they can be added to the total

radiated field:

ETotal(θ, φ) = EGO(θ, φ) + ED(θ, φ) (3.25)

where EGO is the monopole’s geometric optics (GO) electric field pattern,

which takes into account the reflections of an infinite conductive surface, and

ED is the diffracted electric field from the calculated vector potential of the

equivalent currents at the edges taking into account both Eθ and Eφ compo-

nents.

Having all mutual coupling parameters (Smn) between the element of in-
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terest and its neighboring elements, one can add these diffracted fields to both

compontents of the radiation pattern in order to have a more accurate and

complete representation of the embedded element pattern.

Ee
m(θ, φ) =

(
Eisol(θ, φ) + ED

m(θ, φ)
)(

1 +
N∑
n=1

Smne−jk(r′n−r′m)·r̂
)

(3.26)

3.4.3 Four-Edge Equivalent Current Model

This proposed equation for an embedded element pattern (Ee
m) placed in any

arbitrary position (m) of the conductive surface or ground, now includes the

effects of diffracted fields from the edges at each location (ED
m) as well as

the mutual coupling parameters of the array to an isolated element pattern,

represented by Eisol. It also takes into account the cross-polarized component

when it is usually neglected.

Magnetic Incident Field

Using the monopole radiation pattern as an example, the incident electric field

will be expressed as:

Ei
θ = 1

2Eo
cos

(
π
2 cos θ

)
sin θ

e−jks
′
x,y

s′x,y
(3.27)
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Figure 3.19: Illustration of the modeled four-edge equivalent currents.

s′x =
√
x′2 + dy

2

s
′
y =

√
y′2 + dx

2

 (3.28)

Given the expressions for the radiating element’s electric field Eθ(θ, φ), the

incident magnetic fields at the edges will be:

H i
φ = Ei

θ

η
(3.29)

H i
x = −H i

φ sinφ′

H i
y = H i

φ cosφ′

 (3.30)
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Diffraction Coefficient for Oblique Incidence

The implementation of the diffraction coefficient needs to be expressed as a

function of the oblique angle β ′o and the distance from the source to the point

of diffraction along the edges. Therefore, in the case of a hard diffraction,

the magnetic incident fields will then be dependent on the distance to all the

points along the edges, as well as the azimuth angle φ, which will determine

the oblique incidence used in the diffraction coefficient function as well as the

distance parameters.

Dh(Lx,y, ψ, φ
′ = 0, β ′o, n = 2) (3.31)

Lx = s
′

x sin2
(
β
′

o

)
= dy

2

s′x
(3.32)

Equivalent Radiating Fields

The electric fields radiated by the equivalent currents can be obtained by

calculating the radiating fields from the four magnetic currents along the four

edges of the ground plane. Using the magnetic currents from previous section,

one can obtain the electric fields from vector potential F:

EF
θ = −jωηFφ

EF
φ = jωηFθ

 (3.33)

F = εe−jkR

4πR L (3.34)
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L =
∫

[Ix + Iy + Iz] ejkr
′ cosψ dl′ (3.35)

where r′ cosψ = x
′ sin θ cosφ+ y

′ sin θ sinφ and dl′ = dx
′ or dl′ = dy

′

Radiating Field From Currents Along Y

Fy = εe−jkR

4πR

[∫ (
Imy1e

jk

(
dx1 sin θ cosφ+y′ sin θ sinφ

)

+Imy2e
−jk
(
dx2 sin θ cosφ+y′ sin θ sinφ

))
dy
′
]

(3.36)

Fθ = Fy cos θ sinφ (3.37)

Fφ = Fy cosφ (3.38)

Radiating Field From Currents Along X

Fx = εe−jkR

4πR

[∫ (
Imx1e

jk

(
x
′ sin θ cosφ+dy1 sin θ sinφ

)

+Imx2e
−jk
(
x
′ sin θ cosφ+dy2 sin θ sinφ

))
dx
′
]

(3.39)

Fθ = Fx cos θ cosφ (3.40)

Fφ = −Fx sinφ (3.41)
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3.5 Summary

This chapter introduces the critical tools in diffraction theory used in this work.

The use of two-point diffraction aids in the understanding of quickly placed

elements along an arbitrary sized conductive surface. This provides the ability

to characterize the ripples and variations in the radiation pattern caused by

the diffracted fields introduced by the antenna’s environment that can affect

gain performance. As an expansion to this, the ECM takes in consideration

every individual point of diffraction that can be calculated by the two-point

procedure but throughout the complete edge, modeling the diffracted fields

as an equivalent current. This brings the ability to calculate radiation fields

with the use of vector potential theory in order to model the edges as though

they where current sources. In the case of this study, the sources are modeled

as magnetic currents, since the only used diffraction coefficient needed is for

hard polarization due to the assumptions that the elements are close enough

to the surface of the PEC and therefore, cancellation of the direct and reflected

diffracted fields occur as shown in Section 3.3.2. In the next chapter, the use

of this tools is integrated into quantifying the effect diffracted fields have on

phased array antennas.
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Chapter 4

Impact of Edge Diffraction in Finite Phased Array

Antennas

4.1 Introduction

The tools that are provided in this manuscript aids in characterizing and quan-

tifying in a more accurate way the effects that diffraction has on the radiation

pattern performance of the antenna element in a phased array environment.

This brings many questions to the discussion as to what aspects of a phased

array performance can diffraction be a hindrance. The main aspects of the

use of phased array technology is the capabilities of electronic scanning, high-

gain with a low-profile, improved life-span of a radar with better failure rate

and flexibility of beamforming techniques. However, diffraction can be a de-

termining factor as to how well the phased array will perform under these

metrics.

Specifically in weather radars, co-polarization mismatch is required to be

minimized in order to have accurate estimates of the volumetric scans. It will

be shown in this section under what situations can diffraction be a source of

inaccuracy. Also, the cross-polarization performance, as discussed previously

in Section 2.2, has to perform under certain levels in order to provide accurate
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Figure 4.1: Geometric optics pattern with unit amplitude used to characterize
diffracted field impact in phased array parameters.

measurements, diffraction however has a significant effect at the element level

that can in situations be translated into array level detrimental pattern per-

formance. Hence, for a large structured phased array, the introduction of gaps

between panels, or internal gaps, can be additional sources of diffracted fields,

that can be concerning. This chapter explores the extent at which diffracted

fields play a role in these important metrics in PARs for polarimetric applica-

tions.

4.2 Co-polar Mismatch Study

Co-polar mismatch in a dual-polarized phased array antenna can be widely

attributed to several factors.

1. Asymmetrical feeding between polarization ports of the radiating ele-

ment.

2. Radiator structure.

3. Mutual coupling differences between polarizations.

4. Diffraction from the edges and other discontinuities.
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Figure 4.2: Calculated total fields of an ideal source over a ground plane of
varying size (w).

In this study it will be shown what is the quantitative contribution and the

behavior diffracted fields have on the overall pattern of a radiating element.

As a test, a virtual ideal source of unit amplitude is used to evaluate the edge

effects have in terms of diffraction to the radiation pattern. In this case, the

pattern is placed in the center of a squared ground plane of PEC, see Figure 4.1.
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As the size of the ground plane changes, so does the amplitude and phase

of the diffracted fields that when added to the GO pattern causes rippling, as

shown before in Section 3.3.2. Figure 4.2 shows how the varying size of the

ground plane can have an effect on the resulting field from super-positioning

the diffracted fields from point a and b. It is clear that as the distance to the

element is increased, the number of ripples are increased in terms of lambda,

therefore, varying the amplitude at any point close to broadside (θ = 0◦).

Assuming that the element radiates in the orthogonal direction, representing

the second polarization, the diffracted fields will have the same effect. This is

because the distances from the element to both of the edges on either side, is

exactly the same.

The following results show co-polar mismatch of a perfect radiation source

with unit amplitude in all directions placed along the ground plane of a panel.

As the element is placed in different positions of the ground plane, the ampli-

tude of spreading of the wave in the edge is increased on one side in comparison

to the other, making an asymmetrical pattern. One thing to note is that at

the orthogonal dimension the distances to the edges remain equally, and an

asymmetrical pattern as shown in element (1) is expected. Hence, this un-

equal distribution of electric fields in space will provoke a co-polar mismatch,

especially when looking at broadside (θ = 0◦), as shown in Figure 4.3. The

values of the mismatch level with respect to the element’s position in a 5x5

configuration is presented in Table ?? and is illustated in Figure 4.4

Taking the diffracted values at each position of an arbitrary array of 25

elements. The points of asymmetrical illumination will give co-polarization

mismatches in the embedded element pattern and therefore, diffraction is to

be considered whenever it is of interest to illuminate individual elements with
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Figure 4.3: Calculation of the element patterns represented by the positioning
over the ground plane.

different propagation techniques or selective illumination.

The results presented in Table ?? show the co-pol mismatch at boresight

for different positions, as seen in Figure 4.4 assuming that the element ra-

diates equally in both horizontal and vertical directions. However, it is well

known that the antenna patterns for practical dual-polarized elements would
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Figure 4.4: Illustration of the copolar mismatch at boresight (θ = 0◦) for each
element of a 5x5 configuration. (a) Arrangement of elements (b) mismatch
values with respect to element’s position.

Table 4.1: Co-polar mismatch at boresight of the individual elements on a 5x5
array.

m/n 1 2 3 4 5
1 0.00 -2.59 0.29 -2.59 0.00
2 2.59 0.00 2.29 0.00 2.59
3 0.29 -2.29 0.00 -2.29 0.29
4 2.59 0.00 2.29 0.00 2.59
5 0.00 -2.59 0.29 -2.59 0.00

not radiate equally. This is due to the nature of the antenna structure and

its radiation mechanism and how the antenna is being excited or what type of

feeding structure it has. In the case of the MPA, it contains different radiation

patterns for both E- and H-planes. Therefore when used as a dual-polarized

element, both need to be taken into account.

4.3 The Average Embedded Element Pattern

Since the array pattern is the summation of all the embedded element patterns,

the average embedded element pattern shows how the array will perform.
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Eavg(θ, φ) =
∑N
n=1

∑M
m=1 Enm

e (θ, φ)
N ∗M

(4.1)

The example shown in Figure 4.5, shows the average of all element patterns

positioned along a single row of 5 different positions spaced 0.5λ apart. The

diffracted fields are calculated for each position without the other elements

presence or mutual coupling, therefore the elements do not interact with each

other. The variation in diffracted fields will cause a rippling effect on the

average element pattern. This effect is then dependent on the number of

elements and the spacing between them. As the spacing is increased so does

the ground plane structure over which the elements would be placed.

The array pattern will follow the amplitude of the average embedded ele-

ment pattern and is evident that with the consideration of diffraction solely,

there is a variation in gain when the array is scanned off of broadside (θ = 0◦)

to 60◦.

With different spacing between the elements, so does the distance between

the elements to the edges and therefore, it will introduce changes in the average

pattern. Another important distinction is that as the number of elements

increases so does the average pattern. Its ripple will relatively flatten out for

a more constant pattern but still will have some rippling present, especially at

wider angles.

The rippling is therefore not solely related to mutual coupling in an array.

to verify this several simulations are made in order to see what the effect that

mutual coupling has on the embedded element pattern.

For an element like a MPA where the radiation pattern contains both Eθ

and Eφ components, the average pattern would have different radiation pat-
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Figure 4.5: Element patterns for a 5x1 linear array are calculated with two-
point diffraction and are overlapped. Below the overlapped isolated element
patterns is the calculated scanned array patterns following the gain of the
average element pattern.

terns in both directions. Due to boundary conditions, the roll-off and diffrac-

tion will have an effect on the pattern’s gain as well as cross-pol performance.

To further analyze what is the contribution of diffraction to the general

average embedded element pattern in a phased array antenna, simulations

are made and analyze where the effect of mutual coupling is introduced. By

simulating each element individually placed along the ground plane, mutual

coupling will not be present but the element at each position will represent

each isolated element.
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Figure 4.6: Total field calculations for (a) different element spacings for (b)
an array with different number of elements.

95



In efforts to verify what the relationship is between the diffracted field and

the average embedded element pattern, a comparison is made with and without

the interaction between elements. It is well known that the phased array

pattern is the summation of all the active elements in an array. The active

element patterns are dependent on the mutual coupling between neighboring

elements, and the diffracted fields associated with their location with respect

to the edges. For this study, all elements are excited uniformly (16 0◦) and

the simulation is done for a populated array and the isolated element at each

position. Hence, the results can be compared for the presence of diffraction at

the element level with and without mutual coupling.

A conventional MPA fed with one probe, as shown is Figure 4.7, polarized

linearly along φ = 90◦, is simulated for different scenarios. One where mutual

coupling is along the E-plane and therefore a linear array along a row and

along a column for an H-plane mutual coupling case. It is configured as a

linear array along a row where the mutual coupling is then applied along the

E-plane and a linear array along a column to apply mutual coupling along the

H-plane.

By overlapping the embedded element patterns in this direction it is shown

that there is no significant effect in the cross-pol on the E-plane. However, it

is shown that in the E-plane, the rippling is present in the embedded element

patterns and not in the H-plane patterns. This is because for the case of

an element placed on the ground plane, only Eθ components will generate

significant diffraction. Hence the co-pol pattern of the E-plane and the cross-

pol pattern of the H-plane have present Eθ components where diffraction is

affecting.

By simulating each individual element isolated but in a finite ground plane,
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Figure 4.7: (a) One-probe single-polarized MPA unit cell used for the average
pattern simulations. (b) E-plane and (c) H-plane patterns.

it is confirmed that the rippling of the pattern is solely due to the diffraction

from the edges. It is interesting to note, that the cross-pol is not changing as

the element is moved along the row, even though diffraction is present. In any

case the cross-pol is actually higher compared to the populated case. This may

be due to the fact that the energy is absorbed by the other terminated elements

due to mutual coupling and consequently reducing any spurious radiation that
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Figure 4.8: Overlapped embedded patterns for each E- and H-plane cuts at
each location of a 1x5 array configuration for (a) an isolated element at each
position and (b) for each element in the array environment with neighboring
elements including mutual coupling.
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may cause cross-polarization.

A case where a change in cross-pol can be appreciated is the elements

aligned vertically in a column (along φ = 0◦). Something to point out is the

Eθ (co-polarized field) component’s ripples are barely changing element to el-

ement. In this case the elements distance to the edges in the E-plane are all

equal. Therefore the diffracted fields produced are the same and hence, the

pattern is not changing. Since the H-plane co-polarized field is an Eφ com-

ponent and is tangential to the edge, the diffraction is almost negligible and

therefore, does not change. Nonetheless the cross-pol in the H-plane, which is

the Eθ component along φ = 90◦, does diffract when incident upon the edges

and a small rippling can be appreciated. The cross-pol along the E-plane is

where a significant change is seen from element to element, even in the isolated

cases (see Figure 4.9), where the position where the lowest levels are is right

at the center of the ground plane. As the element is moved closer to the edges

the cross-polarized fields increase in magnitude. However, it is important to

note that the average value maintains low. This phenomena suggests that the

diffraction causing cross-polarized fields, if illuminated uniformly and symmet-

rically can cancel out. This however, may not necessarily be the case in real

practical scenarios.

In almost all real scenarios for a weather radar application a full planar

array is implemented. A fully populated case is simulated to show the embed-

ded element patterns overlapped in Figure 4.10. The average patterns shown

can be seen to have a lot more variation. This is due to the added element

locations across the ground plane panel. For this reason, it is possible that

the average cross-polarization is lower than all the other cases due to a more

effective cancelation of diffracted fields. To maintain this adequate cancelation
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Figure 4.9: Overlapped embedded patterns for each E- and H-plane cuts at
each location of a 5x1 array configuration for (a) an isolated element at each
position and (b) for each element in the array environment with neighboring
elements including mutual coupling.
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Figure 4.10: Overlapped embedded patterns at each location of a 5x5 array
configuration for (a) an isolated element at each position and (b) for each
element in the array environment with neighboring elements including mutual
coupling.
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all elements are assumed to be excited.

In conclusion, regardless of the presence of mutual coupling, the antenna

gain variation is ultimately due to diffracted fields. The cross-polarized fields

do increase dramatically per element if it is to be moved closer to edges that

are tangential to the direction of polarization. To further study the effects of

cross-polarized fields and diffraction in phased arrays, simulations are made

with an element design that has high polarization purity and can be used for

weather applications.

4.4 Cross-polarization Performance Study

As previously shown, cross-pol variations caused by diffracted fields can be

sensitive in the E-plane. Simulating a differential-fed MPA the cross-polarized

fields are reduced substantially the principal planes (E- and H-planes). Since

the H-plane cross-polarized fields are significantly lower than a one-probe de-

sign, the changes in cross-pol, if any, in this cut can be appreciated. There is

an effect from diffraction in this cut but only in the elements that are at the

extremes, or right at the edges of the ground plane.

Since in the weather radar community the interest is to use radiating el-

ements with low cross-pol in all of the scanning planes the element used for

this study is a differential-fed MPA. In this particular design both ports are

directly opposing each other with a 180◦ phase shift between port excitations.

An illustration of this element is shown in Figure 4.11. With this phase shift,

a uniform distribution of fields in the cavity allow for adequate cancellation of

cross-polarized fields providing low cross-pol even in the H-plane compared to

the conventional one probe design.

To demonstrate, the average embedded element pattern is shown in Fig-

102



1
2

180º0º

-30

-20

-10

0

60

120

30

150

0

180

30

150

60

120

90 90

-30

-20

-10

0

60

120

30

150

0

180

30

150

60

120

90 90

(a)

(b)

(c)

Figure 4.11: (a) Differential-fed single-polarized MPA unit cell horizontally
polarized used for the average pattern simulations and cross-polarization char-
acterization. (b) E-plane and (c) H-plane patterns.

ure 4.12 for both planes in both row and column configurations. Here, we can

appreciate now any contributions in cross-pol degradation that could occur in

the H-plane. It is observed that even though it is much lower, some locations
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Figure 4.12: Overlapped embedded patterns at each location of an array con-
figuration for (a) an isolated element at each position of a center row of 1x7
and (b) for each element in each position of a center column of 7x1 and their
corresponding E and H-plane patterns respectively.
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closer to the edge to give high cross-polarization values. However, it is less

common than in the E-plane when the element is placed with its polarization

parallel to the edge, as discussed before in Section 4.3.

To verify how the cross-polarization of an array is affected by diffraction,

two different sized arrays are simulated for odd and even-numbered array.

In Figure 4.13 both E-planes are shown for both array sizes. Even for this

highly-pure element the observed behavior in cross-pol increase throughout

the array is seen. Even-though the average pattern shows a low cross-pol

on both configurations, the odd numbered array shows more cases where the

cross-pol is maintained low. This is because these elements are in the middle

row therefore the symmetry doesn’t generate diffracted fields that would show

up as Eφ components. However, in the even array since there isn’t a middle

row, but all elements are off center or off-axis, therefore if every single element

is considered, they all will have high cross-pol values unless they are all added

and therefore, cancelled, when they are illuminated.

The even array has elements all around the origin but not exactly in the

center of a coordinate. The odd numbered array has elements along (x =

0, y = 0), (x = x′, y = 0), and (x = 0, y = y′). Therefore, these considerations

are important because the elements at which lie in the center of the panel

have different cross-pol components (potentially co-pol as well) between H-

and V-polarizations. Therefore a failed element test is to be done in order to

verify the feasibility of using either.

From the current results taken from the even array it is confirmed that all

of the elements have a higher cross-polarization on their own. However when

added and averaged it is way below. However this adds elements with higher

cross-pol that are more dependent on the symmetry of illumination.
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Figure 4.13: Overlapped element patterns at each location of a (a) 6x6 even-
numbered array configuration and a (b) 7x7 odd-numbered array configura-
tion.

In order to verify the feasibility of the phased array performance whenever

it is operating long term, a failed element analysis is done. In order to ensure

it will work properly for polarimetric weather measurements, the phased array

must perform under the required sidelobe level, co-polar mismatch, and cross-

polarization performances throughout the phased array’s scanning range. In
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Figure 4.14: Overlapped embedded patterns at each location for a 6x6 array
configuration with (a) tapering and no failed elements and (b) for tapering
with a 5% element failure without the presence of mutual coupling.
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Figure 4.15: Overlapped array scanned patterns with the average embedded
element pattern for the previously discussed 6x6 configuration of differential-
fed MPA showing (a) all elements active and (b) a 5% element failure.

this study both the odd-numbered and even-numbered arrays are introduced a

failure rate percentage in order to verify the performance of the configurations

for long-term assessment.

A simulation is done for both panels and with a 5.56% failure rate, for a

36 element array once can easily see a significant increase in cross-pol levels

of about 20 dB, which can be detrimental if the individual radiating elements

have a limited cross-polarization at about the requirement. This is why it is
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important to use well isolated elements from the start.

Using the metrics specified in this work, the overall cross-polarization level

thought the scanning range can show the impact a percentage of failed elements

can have on both situations, which can be potentially modeled using the 4-edge

ECM method discussed in this work.

4.4.1 Internal Gaps

It is common practice that PARs be designed for scalable capabilities. Large

structures are extremely hard to fabricate let alone do maintenance on. When

the failure of elements arises or any other type of complications in the system,

subarray panels can be swapped easily and effortlessly. The use of subarray

panels however, introduce multiple points of discontinuity around the antenna

elements. This can potential affect multiple elements, especially the elements

at the edges [13].

In Figure 4.16 a simulation shows the added cross-polarization due to these

“internal gaps”. An interesting observation is that the co-polarized pattern

is practically unchanged. The real problem comes with electric fields of low

magnitude start to affect low-magnitude fields such as the cross-polarized fields

in a pure polarized element.

What this shows is a confirmation that the level of polarization is highly

dependent on the polarization of the excited element and its positional relation

to the edge. Furthermore, the mere presence of a discontinuity has an effect

in the cross-polarization. For instance, in this example, just small increases of

only 0.01λ are enough to cause perturbations in the cross-polarized fields.
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Figure 4.16: Simulated results of radiation pattern of element tangentially
polarized to the internal gaps between two panels.

4.5 Mutual Coupling

Mutual coupling in the monopole antenna case is strong, since the maximum

radiation intensity is at end-fire and therefore, towards the other neighboring

antennas. However, reflections are so large that it causes stronger scattering

at the edges. Therefore, this is why it is of interest to study the effects of

mutual coupling with the monopole array. First we will look into when does
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fixed separation of λ/2 and the ground plane is increased by a factor of a in
terms of λ. The magnitude and phase of the mutual coupling between the two
elements is illustrated.

the edges have an effect on the mutual coupling between two fixed antennas

with λ/2 separation (see Figure 4.17).

These results can show the variability that edges can impose on the mu-

tual coupling between elements. Until reaching a uniform contribution at an

extended ground plane of 1λ or more. Therefore elements at right at the edges

or discontinuities in a ground plane are prone to mutual coupling variances.

Figure 4.18 shows how the presence of a finite ground plane can affect the

mutual coupling for a column of elements. The added scattering from the

diffracted edges add to the mutual coupling parameter’s intensity along the

edge. This is of importance to notice when an array now is populated by gaps

in between subarray panels.
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Figure 4.18: Simulated 5x5 configuration of monopoles with an infinite and a
finite conductive surface (2.5λ) to show the effects of added scattering from
the edges to the final column of the array.

4.6 Summary

This chapter illustrates the general impact edge diffracted fields have on the

performance of phased array antennas. An analysis based on the positioning

and polarization excitation is done in order to show the effects edge diffraction

has on the individual element patterns of an array. This then translate to

differences when steering the beam of the phased array. The results show that

for elements with low levels of cross-polarization isolation, once they are moved

from a central position of the ground plane, cross-polarization contamination
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solely due to its positioning with respect to the edges is introduced.

Hence, depending on the number of elements in a phased array, the indi-

vidual active element patterns will have different levels of distortion. However,

once all of them are taken into account as a whole, these diffracted field contri-

butions can cancel out and null itself. This is only if, the element is exactly the

same throughout and has the same radiation characteristics for every element

in position. If there is a slight shift in position or performance this cancellation

might not be as effective.

Another important observation done in this chapter is the effect that the

element excitation errors may potentially have on the array performance. The

array performance will be dictated by the average embedded element pattern.

Hence when a number of excitation errors are in the form of failed elements,

the average embedded element pattern shows an ineffective cancelation of the

edge effects. Therefore, the embedded element pattern shows higher cross-

polarization levels, which results in higher cross-pol when scanning the array.

Finally, this is even truer for the case where there are multiple sources of

diffraction, as is the internal gaps between subarray panels in a larger-scaled

PAR.

Considering the effect the reflections caused by the edges have on the mu-

tual coupling parameters of the array is another important consideration. The

last few figures show the importance of knowing the effects the edges can have

on the mutual coupling between elements, especially along the edges. This

then is translated to the active impedance of the elements and in turn could

affect calibration techniques based on mutual coupling as well as the scanning

performance of the PAR.
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Chapter 5

Analytical Model Validation and Results

5.1 Introduction

In recent years, antenna performance requirements in cross-polarization levels

have pushed boundaries in design. One good example is the design of radiating

elements for the use of weather radar phased array technology. In this appli-

cation, simultaneous transmit and simultaneous receive (STSR) polarization

mode is used, where the cross-pol level requirements are down to -40 dB for

scanning the array in principal planes and -35 dB for scanning in nonprincipal

planes [50], [68]. The design of arrays for weather radar applications requires

large panels that are produced in tiles or subarrays to comply with fabrica-

tion and mechanical limitations. This introduces gap discontinuities between

subarrays when mounted in the front panel of the system.

Discontinuities in the conductive plane of antenna arrays produce diffracted

field levels that can reach about -30 dB and affect the performance of elements

the closer they are to the discontinuities or edges of finite arrays [13]. These

fields can greatly disrupt the cross-polarization level of individual elements

and can result in higher levels when scanning an array pattern off of broadside

and at nonprincipal planes. This should be of great importance especially
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for cases like large fully-digital phased arrays, where individual elements are

excited independently to form multiple beams from different sections of the

array [69]. The effects of the discontinuities could greatly contaminate the

cross-polarized fields for individual scanned patterns. A mathematical model

is ideal to predict such scanned patterns where an extensive array might require

too much resources for numerical simulations.

There has been previous attempts to model the embedded elements of

an array and their cross-polar components including the mutual coupling in

the presence of edge effects [42]. However, this does not take into account the

diffraction effects directly in the pattern. The element patterns can be affected

by the presence of mutual coupling as well as edge effects [70]. This work only

considers the effect in the mutual coupling parameters and no emphasis done

to cross-polar components of the radiation pattern. For a monopole antenna

array, the effect of mutual coupling is considered theoretically and experimen-

tally [71]. Yet, there has not been a study where the individual embedded

elements and the contribution of edge effects to the shape and amplitude of

the individual cross-polar patterns based on their location in a finite ground

plane.

The calculation of fields present in the radiating element’s illuminated and

shadow regions, usually referring to the front and backside of the ground plane

respectfully, are made possible with the use of the Uniform Theory of Diffrac-

tion (UTD) [72]. This theory provides a dyadic diffraction coefficient capable of

producing an approximation based on an asymptotic solution of the diffracted

fields due to discontinuities in conductive surfaces and wedges. Further imple-

mentation of this model is seen for calculating diffraction due to a geometry’s

finite edge where radiation integrals are necessary to produce the fields at
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the caustic region by means of equivalent currents [73]. The use of the UTD

method and its extension, to what is known as the equivalent current method,

is used to evaluate diffraction from ground plane edges in common antenna

elements, such as aperture antennas, in both its principal E- and H-planes

[29]. This provides a combination of diffraction techniques and radiation inte-

grals in order to produce a solution for the fields produced by wedges of finite

lengths.

As will be shown in this chapter, the effects diffracted fields have on the

antenna radiation pattern can be in the form of amplitude and phase errors for

each individual element, which are translated into calibration issues, as well as

degradation of cross-polarization isolation. Diffracted fields are produced by

an incident field upon a discontinuity in a conductive surface. These discon-

tinuities are usually in form of vertex, edges, or curved surfaces. Depending

on what geometry the incident field comes upon and the distance from the

radiating source, the diffracted field can cause certain effects, which will be

shown in this study.

The following sections will present the implementation of the analytical

model to various cases. The first case involves the monopole antenna, which as

mentioned before in this dissertation, it is a great tool to theoretically prove the

generation of cross-polarized fields from a wire antenna which contains purely

co-polarized fields. Experimental results are shown as well as an analysis based

on simulation and calculation of the displacement of the antenna and the cross-

polarized levels generated. Last, a MPA element is introduced to validate the

4-edge ECM analytical model. A combination of numerical analysis, which

includes FEM from a simulated antenna element with an infinite ground plane,

is used to calculate the effects from the edges analytically and compare with
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likewise simulated FEM results from a finite ground plane of the same size.

5.2 Monopole

The monopole antenna, as seen in Figure 5.1, is a fundamentally basic element

that theoretically produces Eθ components along all azimuth (φ) angles. This

element is chosen for this study because its theoretical value for the cross-

polarized component (Eφ) is zero. Besides being an element of theoretically

pure polarization along elevation (θ) angles, it is also an element that radiates

uniformly in all directions along every azimuthal cut. Because of these rea-

sons, the monopole proves to be a good case for identifying and illustrating the

effects that an antenna element would be subject to when introduced to finite

edges, particularly a dual-polarized antenna. Figure 5.2a and b show a com-

parison of simulated monopole antenna patterns in its array environment in

two different positions with and without neighboring elements that introduce

mutual coupling. This clearly demonstrates that the monopole antenna in the

center is purely polarized in θ, even with mutual coupling introduced, while

the φ components are present solely due to diffracted fields from the edges.

The most straightforward way to predict the radiation pattern of an ele-

ment with the effects of the diffracted fields from the edges of a conducting

surface is by calculating the two-point diffraction with the use of the dyadic

coefficients in diffraction theory. The diffraction coefficients are determined by

the distance from the source to the point of diffraction, the angle of incidence,

and the geometry of the wedge. This method only needs a point of diffraction

on each side of the ground plane in a single cut in azimuth (φ). For the case

of this study, the ground plane has four straight edges and assumed to be a

strip where the wedge has no angle.
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Figure 5.1: (a) Side view illustration of diffracted fields generated by the
placement of a monopole along a ground plane and (b) a top view including
the equivalent currents generated by a monopole antenna of about λ/4 in
length on a finite ground plane [62].
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Figure 5.2: A comparison of a simulated λ/4 monopole element at 5.45 GHz
placed in the (a) center [0,0] position and (b) corner [1,1] position of a λ/2
spacing 3x3 array configuration with and without neighboring elements for
mutual coupling [62].

Since, for the case of the monopole antenna, Eφ is theoretically zero, the

diffracted fields using the two-point diffraction can only be determined for Eθ

components at any point QD along the edge, shown as Ei
θ(QD). The diffraction

coefficient used is determined by the orientation of the incident field upon the
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Figure 5.3: Comparison of theoretical (proposed method), simulations, and
measured results of an isolated monopole antenna patterns with the effect of
diffracted fields on co- and cross-pol when placed at (a) center [0,0] position,
(b) edge [0,1] position, and (c) corner [1,1] position on a 4λ sized ground plane
at 5.45 GHz. The (d) relatively thin (1.57 mm) aluminum sheet is (e) mounted
on an electromagnetically invisible pedestal for far-field measurements [62].

wedge. All incident field components from the monopole are perpendicular to

the edge, therefore, only hard diffraction coefficient is considered. Considering

that Eφ components are zero and the grazing angle of the incident field with

respect to the surface is considered to be 0◦, the soft diffraction coefficient

is omitted and only ED
θ diffracted fields can be determined. However, due

to the diffraction phenomena itself there are diffracted fields that have Eφ

components in practice, as seen in Figure 5.2b.

In theory, one of the sources of cross-polarization contamination is known
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to be mutual coupling of antenna elements in an array [74]. There is cross-

polarization increase whenever an element is in the presence of mutual coupling

as does its radiation characteristics in general due to changes in its input

impedance. However, Figure 5.2 shows that diffraction will be a predominant

factor introduced into specific antenna elements, especially when the fields that

are being diffracted originate from asymmetrical positioning of the elements.

The monopole cases presented in Figure 5.3 show proof that a highly-pure

element such as a line of current along z, presented here as a monopole, cross-

polarized fields of high levels are introduced entirely out of diffraction from

the edges. This can be confirmed by the theoretical model presented in this

manuscript where the element at the center, shown in Figure 5.3a, has no

cross-polarized fields due to cancellation of symmetrical equivalent currents.

When the antenna element is moved asymmetrically (off-center), as illustrated

in Figure 5.3b and c, cross-polarization levels increases significantly due to

added Eφ components. This is because contributions of diffracted fields from

edges that are illuminated asymmetrically do are being amplified by the edges

and not cancelling.

When moved to an asymmetrical position such as Figure 5.3b, the points

of diffraction in currents along y are of the same distance, therefore when

looking at the cut in φ = 0◦ the co-polarized pattern (Eθ) looks symmetrical,

but the cross-polarized fields (Eφ) come from asymmetrical sources since the

equivalent current from diffraction is stronger along +x removing the ability

for these fields from both x currents to counteract each other. The result is

a cross-polarized pattern increase from well under -40 dB to greater than -20

dB.

Figure 5.4 shows the integrated cross-polarization values for each position
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displaced from the center of the ground plane to the edge. The limits of the

integration are taken to be between ±60◦, which usually is the desired scan-

ning range that could be attainable at the most with a broadside array. It can

be observed that for the monopole case, where diffraction is strong along all

of the edges, the diffracted fields produce significant cross-pol contamination

with the slightest displacement of the antenna element. The theoretical model

satisfactorily predicts this rise in cross-polarized fields, especially around bore-

sight (θ = ±60◦) where phased array patterns are usually scanned.

For most array antenna elements, mutual coupling is a critical component

in the performance of the array. In some cases like microstrip patches, it can

greatly affect the cross-polarization performance. Results in this manuscript

point to the fact that if it is critical to have low cross-polarization patterns

for scanning arrays and there is a presence of periodic conductive surface

discontinuities, diffraction can be an even greater limitation towards desired

performance. In the case of the monopole shown, mutual coupling is barely a

contributor to increases in cross-polarization patterns. The steps shown here

provide a more accurate representation of what diffraction will contribute to

an antenna element’s performance in such environment.

It is proven with this concept by means of calculations, simulations, and

measurements that cross-polarized fields are generated significantly by antenna

elements positions asymmetrically and close to the edges of a finite phased ar-

ray. With the use of diffraction theory and an extension of equivalent current

method, the Eφ cross-polarized fields can be determined with good agreement

and therefore can be used to predict in a range between θ = ±60◦. There-

fore, phased array antennas with low cross-polarization requirements that have

ground discontinuities can have diffraction fields presence in multiple sections
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Figure 5.4: Integrated cross-polarization levels of a displaced quarter-
wavelength monopole with respect to the distance from the center of the 3.5λ
ground plane.

of the array. Diffraction should be evaluated for individual elements and it is

made possible with the proposed model.

5.3 Microstrip Patch Antenna

As a way of validating the approximation model, an infinite ground plane

solution using finite element method (FEM) is implemented into the proposed
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Figure 5.5: Procedure to develop the finite gnd plane solutions for an arbitrary
element FEM solution data with infinite ground plane.

model. With the capability of calculating the diffracted fields using equivalent

currents around the edges, it is possible to approximate the total fields even

at nonprincipal planes. The procedure, as shown in Figure 5.5, involves the

calculation of the radiation patterns of a single antenna element placed over

an infinite ground plane. These fields are then imported into the analytical

model, which with the calculation of the previously discussed 4-edge ECM the

finite ground plane solution is produced. The result shown in Figure 5.6, is

the E-plane of the antenna element placed over a 3.5λ sized ground plane for

calculations of a 7x7 array positions. Figure 5.7 shows the results of infinite

ground plane solutions once it is introduced into a ground plane in the D-plane

(φ = 45◦) using Ludwig 3 definitions [47]. It is interesting to note that the

element, regardless of being in the center of the ground plane, it experiences

increases in cross-polarization levels in the nonprincipal planes.
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3.5λ

Figure 5.6: Comparison of the FEM results for both infinite and finite ground
planes with the calculated results using the proposed analytical model. The
patterns of the infinite ground plane FEM solution is introduced to the 4-
edge ECM analytical model in order to be compared with the predicted finite
ground FEM solution.

In order to validate the prediction of cross-polarized field contamination

to the element pattern, the calculations are done with varying positions along

the ground plane. The same solutions from the infinite ground plane are then

imported with the right parameters for the element at a 0.5λ movement to

the right. It is then expected that the cross-polarized fields will remain at the

original levels since the element is polarized perpendicularly to the edge at
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Figure 5.7: Results for an nonprincipal plane (D-plane) of the infinite and
finite ground plane FEM solutions compared to the approximations using the
4-edge ECM analytical model. The calculations are done for an element at
the exact center of the ground plane.

which it is being moved towards to. Figure 5.8 shows these expected results

where only a shift in the co-pol ripples cause by the location with respect

to the edges changes. However, cross-polarization levels are mantained below

-50 dB, this is due to the cancelations from all quasi-symmetrically illumi-

nated edges. However, at these low levels of cross-polarization component is

extremely sensitive to higher-order diffraction and therefore, it is quite com-

plicated to model with the current analytical tool. In order to see the effects

on the cross-polarization levels more clearly the element is moved towards the

parallel horizontal edges, as seen in Figure 5.9. This shows significant increases

in cross-polarization. The levels are captured fairly well with the analytical

4-edge ECM analysis, showing that just a slight movement of the element

distorts the cross-polarization greatly by about more than 25 dB in this case.
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Figure 5.8: Antenna element displaced from the (a) center (0,0) to a position
closer to (b) the edges (0,1) along x-axis or perpendicular to the polarization.

The diagonal movement is shown in Figure 5.10, where both co- and cross-

polarized fields are distorted by the edge effects and are predicted by the

calculations of the analytical model as well. Like wise, moving closer towards

the corner, as shown in Figure 5.12, the analytical model is still capturing

the cross-polarization levels well. These results prove that, even with the

complications that lead to this effects, having so much higher-order responses,

especially from corners where there are multiple points of diffraction from edge

to edge, the analytical model can predict the overall levels for failure and error

analysis to predict adequate performance of the array.
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Figure 5.9: Antenna element displaced from the (a) center (0,0) to a position
closer to (b) the edges (1,0) along y-axis or parallel to the polarization.

5.4 Summary

The 4-edge ECM can approximate well the results, hence proving to be an

effective and quick solution to approximate the fields even for a larger array.

The experimental results are shown for the monopole case, where the radia-

tion is strong along all the edges, producing strong cross-polarized fields even

moving the element slightly off the center. The same can be mentioned for

the microstrip patch antenna element moved along the ground plane. The

4-ECM also proves to be an accurate approximation for any antenna that is

simulated in a FEM such as HFSS. The fields taken from the FEM solution

are then used to calculate the edge effects accurately matching those of the

finite ground plane FEM solutions. This proves to be a useful too where it is
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Figure 5.10: Antenna element displaced from the center to a position closer
to the edges along x-axis and y-axis (1,1) with a diagonal movement.

desired to predict the fields of larger-scaled structures which would otherwise

require a large demand in resources to predict the array performance.
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Figure 5.11: Antenna element displaced from the center to a position closer
to the edges along x-axis and y-axis (2,1) with a diagonal movement.
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Figure 5.12: Antenna element displaced from the center with twice the diag-
onal movement along the x-axis and y-axis (2,2).
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Chapter 6

Epilogue

6.1 Summary

This work has presented a thorough analysis into the effects that edge diffrac-

tion has in a PAR. A special focus is done in the fields radiated from these

edges and how they affect the performance of individual elements of the array.

Besides the reflections and scattering caused by the edges that can disturb the

impedance responses of the embedded elements, especially along the edges,

the contribution of the edge effects can be seen at the element level through-

out all of the embedded element patterns along the subarray. Knowing this,

the effects usually are not looked into because diffracted fields usually would

cancel or destructively add itself. However this mainly happens when the ar-

ray is illuminated uniformly and has all of the elements perfectly placed and

are all exactly the same. PARs usually have fabrication limitations where the

elements might be shifted, antenna elements with slight shifts in frequency

also have different radiation characteristics, or where the elements have failed

ports where the array can introduce errors, which can disrupt the adequate

cancellation of fields. The study shown provides an insight as to how and when

the radiation fields from the elements disrupt the radiation performance.
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The polarization definitions for PAR where presented in order to give con-

text to the requirements polarimetric PAR have for weather measurements.

The importance to address many challenges for low cross-polarization require-

ments that arise with the use of electronic beam steering and shaping are

discussed. One such challenge is in the form of polarization projections of the

fields radiating form the PAR and being backscattered from the medium be-

ing detected. Added to this PAR require high-performance radiating elements

and design of these elements have crucial factors involved such as, feeding

techniques and the radiating nature of the antenna structures. These antenna

elements are also placed over complicated structures, such as scalable subar-

ray panels which introduce multiple points of discontinuity, which generate

diffracted fields. These diffracted fields have been detected, but the contribu-

tion to cross-polarized fields have not been analytically quantified until this

work. Other important factors in the adequate performance of the PAR like

mutual coupling is discussed. These parameters are of importance to tech-

niques such as calibration of PAR at the element level, where the edges are

also a well known issue in literature.

Chapter 3 introduced the critical tools in diffraction theory used in this

work. The use of two-point diffraction aids in the understanding of the

arbitrary placement elements along a specifically sized conductive surface.

This provides the ability to characterize the ripples and variations caused

by the diffracted fields introduced by the antenna’s environment that can

cause changes in gain performance. As an expansion to this, the ECM takes

in consideration every individual point of diffraction that can be calculated

by the two-point procedure but throughout the complete edge, modeling the

diffracted fields as an equivalent current. This brings the ability to calcu-
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late radiation fields with the use of vector potential theory in order to model

the edges as though they where current sources. In the case of this study,

the sources are modeled as magnetic currents, since the only used diffraction

coefficient needed is for hard polarization due to the assumptions that the el-

ements are close enough to the surface of the PEC and therefore, cancellation

of the direct and reflected diffracted fields occur as shown in Section 3.3.2. In

the next chapter, the use of this tools is integrated into quantifying the effect

diffracted fields have on phased array antennas.

Illustrated in Chapter 4 is the general impact edge diffracted fields have

on the performance of phased array antennas. An analysis based on the po-

sitioning and polarization excitation is done in order to show the effects edge

diffraction has on the individual element patterns of an array. This then trans-

late to differences when steering the beam of the phased array. The results

show that for elements with low levels of cross-polarization isolation, once they

are moved from a central position of the ground plane, cross-polarization con-

tamination solely due to its positioning with respect to the edges is introduced.

Hence, depending on the number of elements in a phased array, the indi-

vidual active element patterns will have different levels of distortion. However,

once all of them are taken into account as a whole, these diffracted field contri-

butions can cancel out and null itself. This is only if, the element is exactly the

same throughout and has the same radiation characteristics for every element

in position. If there is a slight shift in position or performance this cancellation

might not be as effective.

Another important observation was discussed in Chapter 5 as the effect

that the element excitation errors may potentially have on the array perfor-

mance. The array performance will be dictated by the average embedded
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element pattern. Hence, when a number of excitation errors are in the form

of failed elements, the average embedded element pattern shows an ineffec-

tive cancelation of the edge effects. Therefore, the embedded element pattern

shows higher cross-polarization levels, which results in higher cross-pol when

scanning the array. This is truer for the case where there are multiple sources

of diffraction, as is the internal gaps between subarray panels in a larger-scaled

PAR.

In efforts to predict the contribution of the edges in the cross-polarization

levels of each array element the 4-edge ECM is introduced. It can approximate

well the results, hence proving to be an effective and quick solution to approx-

imate the fields even for a larger array. The experimental results are shown for

the monopole case, where the radiation is strong along all the edges, producing

strong cross-polarized fields even moving the element slightly off the center.

The same can be said for the microstrip patch antenna element moved along

the ground plane. The 4-ECM also proves to be an accurate approximation

for any antenna that is simulated in a FEM such as HFSS. The fields taken

from the FEM solution are then used to calculate the edge effects accurately

matching those of the finite ground plane FEM solutions. This proves to be

a useful too where it is desired to predict the fields of larger-scaled structures

which would otherwise require a large demand in resources to predict the array

performance.

6.2 Conclusions

The findings in this work point towards edge diffractions as a main contribu-

tor to cross-polarization level increases by the mere presence of finite ground

plane edges. Extensive studies are done in order to gain insight as to how
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a polarized element’s radiation pattern performance, specifically in terms of

co- and cross-polarization mismatches, is affected by diffracted fields from the

edges. Theoretical studies show that polarization, distance to the edge, and

the angle of incidence is important factors for diffracted fields and how they

will interact with the antenna element.

A clear representation of a polarized element shows that as the element

is moved from the center of the ground plane, cross-polarization levels are

increased substantially, as well as ripples and errors in the co-polarization fields

can be introduced. Cross-polarized fields are noticeable especially when the

element is polarized in a certain direction and the asymmetric illumination

of the parallel edges to the polarized fields produce substantial mismatches

at the element level. If the array is illuminated uniformly these fields can

be potentially canceled out, however, the research shows that with element

excitation errors or any percentage of failed elements can contribute to a not

so effective cancelation of diffracted fields. This brings forth the conclusion

that any slight errors in antenna placement, fabrication errors, or elements

that are not exactly replicated throughout the array should be taken into

consideration in order to reassure proper performance of the PAR. In order

to do so, proper tools should be implemented to successfully predict what the

embedded element patterns throughout the array will be to ensure adequate

performance of the array.

In this dissertation an analytical model is proposed in order to predict the

effects the diffracted fields introduce to the overall patterns of the elements in

an array. A combination of diffraction theory and an expansion of the modeling

of diffracted fields as equivalent currents is introduced for a flat 4-edged ground

plane in order to capture the undesired cross-polarization contributions that
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are solely from the edges. These contributions even though they might not be

the only ones, are proven to be the main source of cross-polarization at the

element level of the array. The study is applied to the monopole radiation pat-

tern, because of its uniformly strong radiation along all azimuth angles, which

illuminate the edges uniformly to understand how this diffraction phenomena

interacts with the positioning of the element. Furthermore, the MPA is used

by mean of FEM simulation results to show that it is possible to include any

design of interest in some FEM calculation to predict the cross-polarization

performance of the overall elements and array.

6.3 Contribution

The main contribution of this work is an analytical model that can approx-

imate the effect that diffracted fields have on an individual antenna element

placed above a ground plane. This opens the possibilities of scaling larger

phased array performance predictions without the need of high resource de-

manding procedures such as the common FEM analysis. The proven concept

involves the expansion of diffraction theory concepts such as the equivalent

current method to calculate the currents along all four edges of the ground

plane with arbitrary radiating element positions. Furthermore, studies using

diffraction theory and simulations are done to gain further insight as to how

diffraction fields interact with an array at an element level.

The studies done take into account different element types with different

ground plane sizes in the element level. Analytical experiments include differ-

ent locations and array sizes to further complete a study that can be expanded

to larger scale structures. Included in these experiments are analytically built

element patterns and the contributions that the edge effects have on cross-
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polarization and mutual coupling of an array. Finally the model is extended

to be applicable to expandable arrays with multiple tiles and gap separations

between them and how these separations impact the performance of the array.

A better prediction of the array pattern behavior is achieved with experi-

ments on element frequency response, element patterns based on location over

ground plane, and the analytical model for predicting the effects of diffracted

fields on the radiation pattern of each individual element of the array. With

this model it is shown that a more accurate representation of a phased array

performance is possible by including edge effects into the calculations. Making

this analytical model valuable for in-detailed predictions of high-performance

PAR.

1. A stronger, clearer insight as to how edge diffraction affects the radi-

ation performance of each element in an array. Specifically what field

orientations interact more significantly with which specific edges

2. Analytical studies of different sized arrays and how they might differ in

performance and what is the importance of array configurations

3. Different uses for several diffraction theory techniques and how they

can provide insight into how diffracted fields are generated and affect

radiation performance

4. An expanded equivalent current method for the prediction of cross-

polarization levels for any sized array with introduced excitation errors

such as element failures

5. The capacity for scalable applications where a quick prediction and de-

termination of up to par performance with regards to operational re-

quirements
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6. A proven successful procedure that can import any desired FEM antenna

radiation pattern solution and apply a scalable algorithm to produce the

total radiation pattern with the calculation of the diffracted fields from

all four edges of any arbitrarily sized the ground plane and the antenna

element position

7. The analytical tool is also useful when the cross-polarization fields in the

nonprincipal planes such as the D-plane is of interest given that phased

array antennas can electronically steer at all directions in space and not

only at the principal planes

6.4 Future Work

Recommendations for future work are the implementation of impedance cal-

culations for edge effects. This can give a better understanding of mutual

coupling and impedance performance at the element level. Also, the calcu-

lations of surface waves and the diffracted fields produced by such elements

increase the amplitude of diffracted fields and can further improve the accu-

racy of predicted patterns, especially for thicker dielectric materials and higher

frequency applications.

Further work should be done in order to correct for singularities that are

inherent in the calculation of the equivalent currents. Transition effects can

fill up the nulls that wouldn’t be there in practice and are of more interest

for end-fire array applications. Expansion of this model can be done to take

into account the effects of internal gaps throughout a larger-scaled array of

multiple subarrays. Even though the energy dispersed is farther away from

the elements, it should still be of interest to be taken into account for sensitive

measurements.
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Methods of mitigation have been explored before. Resistive loading is

a known technique to suppress radiation from the backlobe of the antenna.

Therefore, what this does in practice is reduce the diffraction caused by the

edges. Besides resistive loading, other methods that involve the disruption

of the ground in order to randomize diffracted fields can be further explored.

Another method that can prove to be effective is the use of metamaterials in

order to depolarize the wave that is being introduced into the discontinuity

of the edge. Other methods includes the application of artificial boundaries

hard or soft boundaries with corrugated surfaces. It is known from this work

that the hard polarization is the one that affects antennas placed on a ground

plane. Therefore, a technique where the edge sees a soft polarized wave instead

might help with mitigating diffracted fields from the edges, and therefore the

scattering that would contribute to disrupting the impedance response.
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