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Abstract— This article presents the development of a CMOS
active array antenna unit cell as a potential solution for a highly
dense, low-altitude short-coverage phased array X-band radar
network system. The antenna uses a cross-patch differential feed
structure designed in a stacked configuration for bandwidth and
cross-polarization enhancement. To overcome the limitations of
current CMOS RF performance, a mirroring technique was
applied at the element and subarray level. A 16-element array
(4×4 elements), integrated with CMOS T/R modules in a tileable
architecture, was developed and characterized. Measured results
demonstrate that this proposed array offers cross-polarization
levels less than −32 dB across the scanning range of ±45◦ in
the principal planes for dual-polarized alternate transmit and
alternate receive (ATAR) phased array weather radar.

Index Terms— Active phased array antenna, balanced feeding,
dual-polarized, dual-polarized weather radar, low-profile phased
array, microstrip antenna array, mirrored feed network, near
field calibration, probe-fed, T/R modules.

I. INTRODUCTION

DURING the last decade, interest in using rapid scanning
radars for weather observation has significantly increased

among meteorologists and radar engineers. Faster update
radars (less than 1 min) are desirable for monitoring large-
scale, fast-moving storm events, especially for the study of
tornado evolutions [1]. With such agile capabilities, a single
radar platform using phased array radars (PARs) offers multi-
beam features that can be applied to many applications, such
as air traffic control and weather observation. PARs are also
scalable, reconfigurable, more reliable, and offer potential
solutions for reducing the operation and maintenance costs
of radar systems [1], [2].

One of the limitations of current weather radar network
systems is blockage due to Earth’s curvature, which obstructs
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observations at low levels of the atmosphere, except at dis-
tances close to the radar. A transformative concept proposed by
McLaughlin and Chandrasekar [2] and McLaughlin et al. [3]
at the CASA NSF Engineering Research Center overcomes
this coverage limitation. The approach consists of the
implementation of a dense radar network (about 10 000 radars)
of short-range (< 40 km range), low-power (< 100 W),
low-weight (< 200 lb), and low-cost (< $100 000 per PAR)
X-band PARs. CASA PARs require an aperture of 1 m × 1 m
to obtain a beamwidth of 2◦ × 2◦. A peak transmit power
of 70–100 W is required in order to obtain radar coverage
between 25 and 40 km. CASA PARs contain 4096 elements
distributed in a rectangular lattice of half-wavelength spacing.
Each element requires about 17–24 mW peak power per
channel. Current RF technology in monolithic microwave
integrated circuit (MMIC) devices offers a large variety of
components that can satisfy the power requirement needed by
this proposed array. A potential cost-effective solution is the
use of integrated circuits (ICs) in CMOS or SiGe to enable
a significant reduction of cost in mass production. To this
day, commercial CMOS technology of 0.13 μm can deliver
a transmit peak power of 12.6–31.6 mW per channel [4].

In dual-polarized weather radars, a minimum of a 0.1 dB
mismatch between H- and V-co-polar patterns and high cross-
polarization isolation levels are required. For simultaneous
transmit and receive (STSR), less than −40 dB of cross-
polarization over the scanning range of ±45◦ in azimuth
and ±20◦ in elevation is necessary [5]. However, for ATAR
polarization mode, cross-polarization requirements are relaxed
to −20 dB [1], [6]. To achieve such requirements, high-
performance RF front-ends (antennas and T/R modules) are
required. To the authors’ knowledge, there has not been a
report of using RF CMOS T/R modules integrated into an
antenna to satisfy such polarimetric requirements for ATAR
polarization mode in weather PARs. The purpose of this article
is to address this concern and demonstrate that PARs using
CMOS technology can fulfill the need of a cost-effective,
short-range, dual-polarized X-band weather radar system.

This article discusses the integration of a high-performance
radiating element with a tileable, low-profile, low-cost, highly
packed CMOS IC multi-core chip (MCC), and demonstrates
the scanning capabilities of the array in a large-scaled polari-
metric weather radar network. Section II provides a complete
description of the array unit cell architecture. In Section III,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1159-349X
https://orcid.org/0000-0001-9211-9911
https://orcid.org/0000-0001-6913-3416
https://orcid.org/0000-0001-9485-4514
https://orcid.org/0000-0002-6031-4998


5422 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 68, NO. 7, JULY 2020

Fig. 1. Dual-polarized X-band active array antenna tile of 4 × 4 elements
with 16 CMOS MCCs (32 channels).

the radiating element design trade-offs are discussed. The
array’s design and performance is demonstrated in Section IV.
Section V presents the TR module technology, and Section VI
discusses measured results of the array architecture.

II. ACTIVE ARRAY ANTENNA ARCHITECTURE

Low-profile, tileable, X-band active array antennas, T/R
module technologies, and their benefits were discussed in [7]
and [8]. In comparison to brick-style modules [8], [9], tileable
architecture brings the ability to expand and scale the size of
a PAR without compromising the mechanical design and RF
performance. This architecture provides a significant reduction
in space and weight that can be beneficial for space, airborne,
and dense radar network applications. An active array tile
architecture demands high electronic integration, and in most
cases, requires customized IC designs and special electro-
mechanical interfaces to interconnect the analog or digital
beamformers, the heat transfer interfaces, and the front-end
subassembly.

An new approach that enables a reduction in size and
weight and eliminates the need for connectors, while still
maintaining the RF and thermal performance of the array,
consists of using a metal interface between the antenna
array and the front-end T/R module board. This metal is
used as a heat sink, and also provides interconnection using
fuzz buttons that provide low losses and reliable RF and
mechanical connection [10], [11]. This concept is illustrated
in Fig. 1 where the proposed active array is used to populate
a large scale array of 16 × 16 elements.

III. ANTENNA DESIGN TRADE-OFFS

In this section, the proposed design and trade-offs of a
balanced, probe-fed, cross-patch antenna with feed rotation
at the subarray level is discussed. Emphasis is on the design

Fig. 2. Cross-polarization performance for a square and a cross-patch antenna
using unbalanced- and balanced-fed techniques for (a) E-plane, (b) D-plane,
and (c) H-plane.

of the radiating element and its benefits concerning isolation,
cross-polarization, and scanning performance.

A square microstrip patch antenna is one of the most
common radiating elements for a low-profile, dual-polarized,
phased array antenna for atmospheric applications [8], [12],
[13]. Square microstrip patches are highly sensitive to the
accuracy of the feed position and the tight tolerances result-
ing from the fabrication process. It has been reported
that small deviations of feed position (<5% error) induce
large errors in the port isolation and cross-polarization
patterns of square microstrip patches [14]. Square patch
antennas also excite higher-order modes, which contaminate
the cross-polarization when values are less than −30 dB.
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Fig. 3. Active array architecture. (a) Antenna array stack-up. (b) Antenna element geometry, where Lp = 9.5 mm, Wp = 3.3 mm, L = 8 mm, and
W = 1.8 mm. (c) Antenna array geometry of 4 × 4 elements, indicating a subarray of 4 × 4 elements and a phased mirroring concept at the subarray level.

To improve cross-polarization isolation, a microstrip patch
antenna was fed with a balanced network [15], [16]. A power
divider that provides the same magnitude for each excited
feed position with a 180◦ phase shift improves the cross-
polarization levels to less than −30 dB. The implementation
of a differential feed to balance the radiating element field
excitation increases the bandwidth of the antenna [17]. Band-
width is important for improvement in scanning performance
at the array level, and also improves the axial ratio [18], [19].

To improve cross-polarization levels to less than −30 dB,
printed crossed dipoles were proposed in [20]. However, these
antennas are not low-profile, are sensitive to diffracted fields in
the vertical structures, and are more complicated to fabricate
than microstrip patch antennas when using a standard printed
circuit fabrication process.

To achieve the required port isolation and array antenna
cross-polarization for weather radars, a cross-patch antenna,
excited with two separate and independent balance-fed
networks, is proposed in this article. This approach has been
successfully implemented in L- and S-band antenna elements
that provided a port isolation of less than −30 dB in the princi-
pal planes [12], [21]. Also, a cross-polarization phase mirror-
ing technique at the subarray level is recommended and also
implemented for weather applications in [22]. Two-port cross-
patch antennas were introduced by Vallecchi and Biffi Gentili
[23] in order to design a series-fed resonant array antenna.
While maintaining a symmetrical structure for dual-polarized
applications, cross-patch antennas help to mitigate undesirable
higher-order modes that are easily excited in a conventional
square patch antenna [14]. In the design proposed in this arti-
cle, a cross-patch with a four-probe balanced network is used
to further improve port isolation and cross-polarization [24].

Fig. 2 presents the trade-offs between square and
cross-patch antennas, with unbalanced and balanced-feeding
optimized for better cross-polarization performance in the
principal and diagonal (D) planes. The values shown are taken
from peak cross-polarization levels in the desired scanning

range (±45◦). The results demonstrate how unbalanced feed-
ing minimally affects both square and cross-patch performance
with respect to cross-polarization levels. Slight improvements
in isolation are seen in the E-plane [see Fig. 2(a)] of the cross-
patch. A significant improvement of about 10 dB or more
in cross-polarization isolation is demonstrated in the H- and
E-planes [see Fig. 2(a) and (c)] when the feeding is balanced.
This improvement can be attributed to a strong suppression of
the higher-order modes. An additional 5–10 dB of improve-
ment in the principal planes can be achieved by the application
of a cross-patch structure as shown in Fig. 2(a) and (c). Table I
presents the summary of the trade-offs for four antennas of
different W/L ratios and feed techniques. In all cases the same
dielectric material (TLY) (�r : 2.2 and Tanδ: 0.0009) was used.
Reducing the W/L ratio increases the resonant length of the
patch and relative feed position of the probe. In cases of a
smaller ratio of W/L, the cross-patch antenna maintains its
efficiency and impedance bandwidth.

IV. ANTENNA ARRAY DESIGN

A. Antenna Element

Fig. 3 shows the antenna element geometry and material
stack-up. The antenna subassembly was composed of four
dielectric layers. A layer of Taconic (TLY) (�r :2.2 and Tanδ:
0.0009), with a thickness of 2 mm, was used to separate
the cross-patch and parasitic cross-patch antennas. A second
layer of Taconic (TLY) with a thickness of 1.14 mm was
used to separate the cross-patch and strip-line-feed networks.
A strip-line-feed network was placed between the two Taconic
TLC-30 (�r :3.0 and Tanδ:0.003) layers. The feeding structure
was composed of two power dividers designed to apply a 180◦
phase shift between the ends of the strip lines. Vias were
placed in the strip-line layer to mitigate parallel-plate modes in
order to avoid compromising the isolation between ports. The
large number of vias and probe excitations necessary for the
balanced-fed network increased the inductance of the input
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Fig. 4. Simulated S-parameters (S11 for H-pol, S22 for V-pol, and S21
for port isolation) and realized gain of the designed balanced-fed cross-patch
antenna element.

impedance of the antenna. Capacitive gaps were introduced
in the bottom radiating patch, as the annular ring slot shown
in [25]. These gaps had to be carefully sized due to coupling
caused by resonances in the rings that could affect the isolation
of the element. Fig. 4 shows an achieved isolation of less than
−40 dB across the bandwidth between the two feeding ports
of the antenna element.

It has been shown that using balanced-fed microstrip patches
limits scanning performance. As the beam scans, resonance
anomalies appear if the feeding structure is not well isolated.
In [15], scanning was improved by implementing a Wilkinson
power divider for the differential feeding. Scanning perfor-
mances shown in the probe-fed antennas in [26] have a range
of ±35◦. The proposed design overcomes this by using both
ground planes and vias to isolate the elements from the feeding
structure, as can be seen in Fig. 3(c).

B. Antenna Array

An active tile array of 4 × 4 elements was developed
to support modular, scalable, large PAR for atmospheric
research. To avoid grating lobes a square lattice array with
element spacing of a half-wavelength was used in the x- and
y-axes. An antenna sub-assembly of 0.1 λo thickness with
a low dielectric constant (�r :2.2) was used to mitigate the
impact of surface waves on overall scanning performance.
A set of simultaneous and transcendental equations were used
to estimate the propagation constant of surface waves (βsw/ko)
in the antenna subassembly

(kcd)2 + (hd)2 = (kod)2(�r − 1) (1)

kcd + tan kcd = hd�r (2)

where h2 = β2 − k2
o and d represents the substrate thickness

of the antenna subassembly

βsw/ko =
√(

�r k2
o − k2

c

)
/ko. (3)

Fig. 5(a) shows the graphical solution for the surface wave
propagation constant (βsw/ko) for the dominant mode (T M0)
in both polarizations. Higher-order modes for surface waves
and parallel-plate modes are not excited using this antenna. For
the antenna subassembly, the normalized propagation constant

Fig. 5. (a) Grating lobe diagram showing calculated scanning performance
for the proposed antenna array. (b) Simulated active reflection coefficient as
a function of scan angle at 9.5 GHz. (c) Gain loss when scanning based on
active reflection coefficient.

for the dominant mode (βsw/ko) is 1.07, producing a scan
blindness at 67.2◦ for the H-pol and V-pol in the respective
E-planes [see Fig. 5(b)]. Numerical simulation using an infinite
array approach in HFSS validates the theoretical estimation
of the scan blindness in the antenna subassembly. The scan
blindness was found to be around 67◦ in the E-plane for
both H- and V-polarizations. The active reflection coefficient
(�a) versus the scan angles for the E-, D-, and H-planes are
represented in Fig. 5(b). Using the acquired active reflection



ORTIZ et al.: LOW-COST CMOS ACTIVE ARRAY SOLUTION FOR HIGHLY DENSE X -BAND WEATHER RADAR NETWORK 5425

Fig. 6. (a) Block diagram of a T/R module for two elements including the 4 × 2 CMOS MCC and four independent GaN or GaAs FECs. (b) Block diagram
of a T/R module based on a 4 × 2 CMOS MCC. (c) Photograph of the CMOS T/R module for the 4 × 4 array. (d) Representation of the four-channel CMOS
MCC die.

TABLE I

ANTENNA ELEMENT PERFORMANCE TRADE-OFFS

coefficient, a calculation of a gain variation [Go(1 − |�a |2)]
of 1 dB was obtained for the scanning range of ±45◦.

In the proposed CMOS array unit cell, cross-polarization
levels are limited by the attenuation performance between
the antenna ports. This limitation can be easily addressed
by adding a front-end chip (FEC) typically designed in
GaAs or GaN. However, adding an FEC implies the use
of more space that will increase the cost and complexity
of the active array as illustrated in Fig. 6(a). The array
architecture proposed uses a combination of CMOS MCC
[see Fig. 6(b)] and a mirroring technique at the subarray level
to satisfy the CASA requirements for ATAR weather radars.
Mirroring techniques to reduce cross-polarization have been
used before for single and dual-polarized antennas [27]–[32].
The subarray of 2 × 2 elements is designed as a unit cell
for mirroring the feed position [see Fig. 3(c)]. Fig. 7 shows
the cross-polarization phase mirroring configuration used for
the array of 4 × 4 elements for H- and V-polarizations. This
phase mirroring technique enables the cancellation of fields
in order to enhance cross-polarization across the scanning
range. The embedded element patterns of the subset of 2 × 2

Fig. 7. Cross-polarization phase mirroring technique at the 2 × 2 element
subarray level on a 4 × 4 element active array tile for H- and V-polarization.

elements of the 4 × 4 array are shown in Fig. 8. Due to
the fact that the array is small in size, edge effects as well
as mutual coupling have an impact on the cross-polarization.
Furthermore, mirroring applied to H- and V-polarizations is
not the same, therefore cross-polarization levels for each ports
are slightly different as well.

Each channel has its independent phase shifter and attenua-
tor capable of exciting every individual H-port and V-port at a
desired phase and amplitude. As mentioned above, there is a
physical mirroring inherent in the design of the antenna subar-
ray unit cell. Therefore, there is some cancellation of fields that
has to be addressed at the respective desired polarization to
be transmitted. To transmit with no opposing or cancellation
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Fig. 8. Simulated (–) co- and (- -) cross-polarization embedded element patterns of the 2 × 2 subset in the 4 × 4 array unit cell at E- (in blue), D- (in red),
and H-plane (in green) for V-polarization and H-polarization at 9.5 GHz.

Fig. 9. Measurements of 4 × 4 active array patterns before applying a mirroring technique for cross-polarization components at 9.5 GHz.

of fields, as shown in the case of Fig. 9, each polarization
port needs to take into account the physical mirroring for
each row and column and apply a 180◦ phase shift so that

all elements are to be added in phase. The co-pol will have
no attenuation applied and the cross-pol will have minimum
amplitude applied. To cancel fields for the cross-polarization
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Fig. 10. Measurements of 4 × 4 active array patterns after applying a mirroring technique for cross-polarization components at 9.5 GHz.

ports, there should be no phase difference so that the physical
mirroring takes place. Furthermore, if there is any other phase
configuration desired to cancel cross-pol, the architecture
has the ability to excite the elements at any desired phase
configuration.

V. T/R MODULES AND TECHNOLOGY

For the proposed active array architecture, the T/R module
design is based on an RF CMOS MCC. The MCC is a
customized die developed with four channels that enable
STSR and ATAR capabilities [see Fig. 6(b)–(d)]. Each
channel is composed of an independent 5-bit attenuator and
6-bit phase shifter. The 0.13 μm CMOS process enables three
times lower power consumption and about a 65% reduction in
cost compared to GaAs core chips [8]. The MCC can transmit
11–15 dBm peak power per channel. The RMS attenuation
error is 0.3 dB in amplitude and 0.9◦ in phase. Fig. 6(b) shows
the block diagram of a T/R module board including only one
MCC for two antenna elements. In the case of demand for
more peak transmit power per channel in the active array,
a T/R module board that includes four FECs and one MCC
for two antenna elements can be implemented, as illustrated
in Fig. 6(a). The FEC can be developed with GaAs or GaN on
SiC to provide peak power between 1 and 10 W per channel.

TABLE II

CMOS 0.13 μM SPECIFICATIONS

For a requirement of 100 W [2], each panel of 64 × 64
(4096 elements) must provide 24.4 mW of power in each
element. Given the specifications of the CMOS die in Table II,
each channel can reach output powers between 12.6 and
31.6 mW. Even though the implementation of the proposed
FECs using GaN, as shown in Fig. 6(a), would greatly improve
the performance of the architecture, the cost will be much
higher. The cost for GaAs or GaN chips can be over $100 for
a single channel chip in high production volume. However,
CMOS can reach costs from $10 to no higher than $45 for
large volumes of production [8]. The architecture presented
in this article, shown in Fig. 6(b), has the advantage that
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Fig. 11. Measurements of 4 × 4 active array scanned patterns in the E-plane
from 0◦ to 45◦ for H-polarization at 9.5 GHz.

instead of one chip per element channel, each CMOS die has
four channels, which operates two elements. For the purposes
of ATAR polarization mode, CMOS technology presented in
this article is enough to obtain power requirements of 100 W
per panel and a large production volume cost of less than
$100 K per panel.

VI. MEASURED RESULTS

A. Array Characterization and Calibration Process

To obtain a desirable amplitude and phase in each element
in the array, a calibration process is needed. This process
is used to account for differences in length between the
electrical paths of the array channels that are caused by
inherent fabrication errors of the front-end. To accomplish this,
the park and probe calibration technique, mentioned previously
in [33]–[35], was applied to calibrate both polarizations in each
radiating element in the array. A custom made measurement
system derived from [36], consisting of a six-axis robotic arm,
open-ended waveguide, and a network analyzer, was used to
perform the calibration in the proposed array.

B. Antenna Pattern Measurements

After calibration, the antenna patterns of the 4 × 4 array
were measured. The measurements were performed using the
Advanced Radar Research Center (ARRC) NF-NSI planar
system. Fig. 9 shows the measured broadside antenna patterns
before applying any cross-polarization phase mirroring.
For both polarizations, antenna array patterns in the three
planes (E-, D-, and H-planes) show cross-polarization levels
around −22 dB. The shape of all cross-polar patterns is
consistent with the co-polar patterns, indicating that the
progressive phase is uniform. However, when applying a
phase mirroring technique to the respective cross-polarized
ports, which is the case presented in Fig. 10, the measured
results of the antenna patterns show an improvement of
about 12 dB or more for all planes. Fig. 11 illustrates the
scanned patterns for the H-polarization from 0◦ to 45◦ in the
E-plane, where the cross-polarization levels are maintained
below −32 dB across all scan angles.

VII. CONCLUSION

This article presents the design and measured results of
an X-band active CMOS tile subarray unit cell intended for
low cross-polarization, low-profile, and low-cost phased array
antennas. The proposed architecture can be used for the X-
band dense radar network composed of short-range, low-
power, and low-profile PARs. The use of a high-performance
radiating element, integrated with highly compact RF CMOS
T/R modules, was proposed for the tile subarray architec-
ture. In order to satisfy the polarimetric requirements (cross-
polarization isolation better than −20 dB across ±45◦ scan-
ning range for ATAR), our team investigated a stacked cross-
patch, balanced-fed antenna element with a phase-mirroring
technique implemented at the subarray level. A combination
of both techniques provides a viable solution to satisfy the
polarimetric scanning requirements for radars in a dense
network system.

A phase-mirroring technique to mitigate cross-polarization
levels in the array was successfully implemented. Results show
that by having the opposing polarization mirrored in each col-
umn or row of the subarray, an improvement of 12 dB or more
can be achieved in all planes. Cross-polarization levels less
than −32 dB were obtained across the scanning range between
0◦ and 45◦.
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